8 research outputs found

    Lattice Boltzmann simulations of soft matter systems

    Full text link
    This article concerns numerical simulations of the dynamics of particles immersed in a continuum solvent. As prototypical systems, we consider colloidal dispersions of spherical particles and solutions of uncharged polymers. After a brief explanation of the concept of hydrodynamic interactions, we give a general overview over the various simulation methods that have been developed to cope with the resulting computational problems. We then focus on the approach we have developed, which couples a system of particles to a lattice Boltzmann model representing the solvent degrees of freedom. The standard D3Q19 lattice Boltzmann model is derived and explained in depth, followed by a detailed discussion of complementary methods for the coupling of solvent and solute. Colloidal dispersions are best described in terms of extended particles with appropriate boundary conditions at the surfaces, while particles with internal degrees of freedom are easier to simulate as an arrangement of mass points with frictional coupling to the solvent. In both cases, particular care has been taken to simulate thermal fluctuations in a consistent way. The usefulness of this methodology is illustrated by studies from our own research, where the dynamics of colloidal and polymeric systems has been investigated in both equilibrium and nonequilibrium situations.Comment: Review article, submitted to Advances in Polymer Science. 16 figures, 76 page

    Optimising corticosteroid injection for lateral epicondylalgia with the addition of physiotherapy: A protocol for a randomised control trial with placebo comparison

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Corticosteroid injection and physiotherapy are two commonly prescribed interventions for management of lateral epicondylalgia. Corticosteroid injections are the most clinically efficacious in the short term but are associated with high recurrence rates and delayed recovery, while physiotherapy is similar to injections at 6 weeks but with significantly lower recurrence rates. Whilst practitioners frequently recommend combining physiotherapy and injection to overcome harmful effects and improve outcomes, study of the benefits of this combination of treatments is lacking. Clinicians are also faced with the paradox that the powerful anti-inflammatory corticosteroid injections work well, albeit in the short term, for a non-inflammatory condition like lateral epicondylalgia. Surprisingly, these injections have not been rigorously tested against placebo injections. This study primarily addresses both of these issues.</p> <p>Methods</p> <p>A randomised placebo-controlled clinical trial with a 2 × 2 factorial design will evaluate the clinical efficacy, cost-effectiveness and recurrence rates of adding physiotherapy to an injection. In addition, the clinical efficacy and adverse effects of corticosteroid injection beyond that of a placebo saline injection will be studied. 132 participants with a diagnosis of lateral epicondylalgia will be randomly assigned by concealed allocation to one of four treatment groups – corticosteroid injection, saline injection, corticosteroid injection with physiotherapy or saline injection with physiotherapy. Physiotherapy will comprise 8 sessions of elbow manipulation and exercise over an 8 week period. Blinded follow-up assessments will be conducted at baseline, 4, 8, 12, 26 and 52 weeks after randomisation. The primary outcome will be a participant rating of global improvement, from which measures of success and recurrence will be derived. Analyses will be conducted on an intention-to-treat basis using linear mixed and logistic regression models. Healthcare costs will be collected from a societal perspective, and along with willingness-to-pay and quality of life data will facilitate cost-effectiveness and cost-benefit analyses.</p> <p>Conclusion</p> <p>This trial will utilise high quality trial methodologies in accordance with CONSORT guidelines. Findings from this study will assist in the development of evidence based practice recommendations and potentially the optimisation of resource allocation for rehabilitating lateral epicondylalgia.</p> <p>Trial registration</p> <p>Australian New Zealand Clinical Trials Register ACTRN12609000051246</p

    Increased fire activity at the Triassic/Jurassic boundary in Greenland due to climate-driven floral change

    Get PDF
    One of the largest mass extinctions of the past 600 million years (Myr) occurred 200 Myr ago, at the Triassic/Jurassic boundary. The major floral and faunal turnovers have been linked to a marked increase in atmospheric carbon dioxide levels, probably resulting from massive volcanism in the Central Atlantic Magmatic Province. Future climate change predictions suggest that fire activity may increase, in part because higher global temperatures are thought to increase storminess. Here we use palaeontological reconstructions of the fossil flora from East Greenland to assess forest flammability along with records of fossil charcoal preserved in the rocks to show that fire activity increased markedly across the Triassic/Jurassic boundary. We find a fivefold increase in the abundance of fossil charcoal in the earliest Jurassic, which we attribute to a climate-driven shift from a prevalence of broad-leaved taxa to a predominantly narrow-leaved assemblage. Our fire calorimetry experiments show that narrow lead morphologies are more flammable than broad-leaved morphologies. We suggest that the warming associated with increased atmospheric carbon dioxide levels favoured a dominance of narroow-leaved plants, which, coupled with more frequent lightening strikes, led to an increase in fire activity at the Triassic/Jurassic boundary

    ZEUS, a detector for HERA : letter of intent

    No full text

    The ZEUS detector: technical proposal

    No full text
    corecore