71 research outputs found

    Anterior shear strength of the porcine lumbar spine after laminectomy and partial facetectomy

    Get PDF
    Degenerative lumbar spinal stenosis is the most common reason for lumbar surgery in patients in the age of 65 years and older. The standard surgical management is decompression of the spinal canal by laminectomy and partial facetectomy. The effect of this procedure on the shear strength of the spine has not yet been investigated in vitro. In the present study we determined the ultimate shear force to failure, the displacement and the shear stiffness after performing a laminectomy and a partial facetectomy. Eight lumbar spines of domestic pigs (7 months old) were sectioned to obtain eight L2–L3 and eight L4–L5 motion segments. All segments were loaded with a compression force of 1,600 N. In half of the 16 motion segments a laminectomy and a 50% partial facetectomy were applied. The median ultimate shear force to failure with laminectomy and partial facetectomy was 1,645 N (range 1,066–1,985) which was significantly smaller (p = 0.012) than the ultimate shear force to failure of the control segments (median 2,113, range 1,338–2,659). The median shear stiffness was 197.4 N/mm (range 119.2–216.7) with laminectomy and partial facetectomy which was significantly (p = 0.036) smaller than the stiffness of the control specimens (median 216.5, 188.1–250.2). It was concluded that laminectomy and partial facetectomy resulted in 22% reduction in ultimate shear force to failure and 9% reduction in shear stiffness. Although relatively small, these effects may explain why patients have an increased risk of sustaining shear force related vertebral fractures after spinal decompression surgery

    Cumulative Low Back Load at Work as a Risk Factor of Low Back Pain: A Prospective Cohort Study

    Get PDF
    Purpose Much research has been performed on physical exposures during work (e.g. lifting, trunk flexion or body vibrations) as risk factors for low back pain (LBP), however results are inconsistent. Information on the effect of doses (e.g. spinal force or low back moments) on LBP may be more reliable but is lacking yet. The aim of the present study was to investigate the prospective relationship of cumulative low back loads (CLBL) with LBP and to compare the association of this mechanical load measure to exposure measures used previously. Methods The current study was part of the Study on Musculoskeletal disorders, Absenteeism and Health (SMASH) study in which 1,745 workers completed questionnaires. Physical load at the workplace was assessed by video-observations and force measurements. These measures were used to calculate CLBL. Furthermore, a 3-year follow-up was conducted to assess the occurrence of LBP. Logistic regressions were performed to assess associations of CLBL and physical risk factors established earlier (i.e. lifting and working in a flexed posture) with LBP. Furthermore, CLBL and the risk factors combined were assessed as predictors in logistic regression analyses to assess the association with LBP. Results Results showed that CLBL is a significant risk factor for LBP (OR: 2.06 (1.32-3.20)). Furthermore, CLBL had a more consistent association with LBP than two of the three risk factors reported earlier. Conclusions From these results it can be concluded that CLBL is a risk factor for the occurrence of LBP, having a more consistent association with LBP compared to most risk factors reported earlier. © 2012 The Author(s)

    Assessment of the paraspinal muscles of subjects presenting an idiopathic scoliosis: an EMG pilot study

    Get PDF
    BACKGROUND: It is known that the back muscles of scoliotic subjects present abnormalities in their fiber type composition. Some researchers have hypothesized that abnormal fiber composition can lead to paraspinal muscle dysfunction such as poor neuromuscular efficiency and muscle fatigue. EMG parameters were used to evaluate these impairments. The purpose of the present study was to examine the clinical potential of different EMG parameters such as amplitude (RMS) and median frequency (MF) of the power spectrum in order to assess the back muscles of patients presenting idiopathic scoliosis in terms of their neuromuscular efficiency and their muscular fatigue. METHODS: L5/S1 moments during isometric efforts in extension were measured in six subjects with idiopathic scoliosis and ten healthy controls. The subjects performed three 7 s ramp contractions ranging from 0 to 100% maximum voluntary contraction (MVC) and one 30 s sustained contraction at 75% MVC. Surface EMG activity was recorded bilaterally from the paraspinal muscles at L5, L3, L1 and T10. The slope of the EMG RMS/force (neuromuscular efficiency) and MF/force (muscle composition) relationships were computed during the ramp contractions while the slope of the EMG RMS/time and MF/time relationships (muscle fatigue) were computed during the sustained contraction. Comparisons were performed between the two groups and between the left and right sides for the EMG parameters. RESULTS: No significant group or side differences between the slopes of the different measures used were found at the level of the apex (around T10) of the major curve of the spine. However, a significant side difference was seen at a lower level (L3, p = 0.01) for the MF/time parameter. CONCLUSION: The EMG parameters used in this study could not discriminate between the back muscles of scoliotic subjects and those of control subject regarding fiber type composition, neuromuscular efficiency and muscle fatigue at the level of the apex. The results of this pilot study indicate that compensatory strategies are potentially seen at lower level of the spine with these EMG parameters

    Sensitivity of Local Dynamic Stability of Over-Ground Walking to Balance Impairment Due to Galvanic Vestibular Stimulation

    Get PDF
    Impaired balance control during gait can be detected by local dynamic stability measures. For clinical applications, the use of a treadmill may be limiting. Therefore, the aim of this study was to test sensitivity of these stability measures collected during short episodes of over-ground walking by comparing normal to impaired balance control. Galvanic vestibular stimulation (GVS) was used to impair balance control in 12 healthy adults, while walking up and down a 10 m hallway. Trunk kinematics, collected by an inertial sensor, were divided into episodes of one stroll along the hallway. Local dynamic stability was quantified using short-term Lyapunov exponents (λs), and subjected to a bootstrap analysis to determine the effects of number of episodes analysed on precision and sensitivity of the measure. λs increased from 0.50 ± 0.06 to 0.56 ± 0.08 (p = 0.0045) when walking with GVS. With increasing number of episodes, coefficients of variation decreased from 10 ± 1.3% to 5 ± 0.7% and the number of p values >0.05 from 42 to 3.5%, indicating that both precision of estimates of λs and sensitivity to the effect of GVS increased. λs calculated over multiple episodes of over-ground walking appears to be a suitable measure to calculate local dynamic stability on group level

    Symptom increase following a functional capacity evaluation in patients with chronic low back pain:An explorative study of safety

    Get PDF
    Introduction: This study was performed to study intensity and duration of symptom increase following an FCE and to explore safety of an FCE. Methods: Included were 92 patients with chronic low back pain (CLBP), mean age 38.5 years, mean self-reported disability 12.5 (Roland Morris Disability Questionnaire). All patients underwent an FCE. Symptom increase was measured with a 2-item questionnaire. Operational definition for safety: no formal complaint filed and symptom increase to occur only temporarily. Results: No formal complaints were filed (n=92). In total, 54 patients returned the questionnaire (59%; 'responders'). Of the responders, 76% reported increased symptom intensity after an FCE, ranging from 'little increase' to 'severe increase'. Symptoms of all responders returned to pre-FCE level. Duration of symptom increase of the responders ranged from 1 day to 3 weeks. Symptom increase resided to pre-FCE level within 1 week in 93% of the responders. Symptom increase was weakly related to self-reported disability (r=0.38, p <0.05). Except for gender, differences between responders and non-responders were non-significant. Conclusion: A temporary increase in symptom intensity following an FCE is common. Within the operational definitions of safety used in this study, assessment of functional capacity of patients with CLBP appears safe

    When Is Visual Information Used to Control Locomotion When Descending a Kerb?

    Get PDF
    YesBackground: Descending kerbs during locomotion involves the regulation of appropriate foot placement before the kerb-edge and foot clearance over it. It also involves the modulation of gait output to ensure the body-mass is safely and smoothly lowered to the new level. Previous research has shown that vision is used in such adaptive gait tasks for feedforward planning, with vision from the lower visual field (lvf) used for online updating. The present study determined when lvf information is used to control/update locomotion when stepping from a kerb. Methodology/Principal Findings: 12 young adults stepped down a kerb during ongoing gait. Force sensitive resistors (attached to participants' feet) interfaced with an high-speed PDLC 'smart glass' sheet, allowed the lvf to be unpredictably occluded at either heel-contact of the penultimate or final step before the kerb-edge up to contact with the lower level. Analysis focussed on determining changes in foot placement distance before the kerb-edge, clearance over it, and in kinematic measures of the step down. Lvf occlusion from the instant of final step contact had no significant effect on any dependant variable (p>0.09). Occlusion of the lvf from the instant of penultimate step contact had a significant effect on foot clearance and on several kinematic measures, with findings consistent with participants becoming uncertain regarding relative horizontal location of the kerb-edge. Conclusion/Significance: These findings suggest concurrent feedback of the lower limb, kerb-edge, and/or floor area immediately in front/below the kerb is not used when stepping from a kerb during ongoing gait. Instead heel-clearance and pre-landing-kinematic parameters are determined/planned using lvf information acquired in the penultimate step during the approach to the kerb-edge, with information related to foot placement before the kerb-edge being the most salient

    Lower extremity joint kinetics and lumbar curvature during squat and stoop lifting

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In this study, kinematics and kinetics of the lower extremity joint and the lumbar lordosis during two different symmetrical lifting techniques(squat and stoop) were examined using the three-dimensional motion analysis.</p> <p>Methods</p> <p>Twenty-six young male volunteers were selected for the subjects in this study. While they lifted boxes weighing 5, 10 and 15 kg by both squat and stoop lifting techniques, their motions were captured and analyzed using the 3D motion analysis system which was synchronized with two forceplates and the electromyographic system. Joint kinematics was determined by the forty-three reflective markers which were attached on the anatomical locations based on the VICON Plug-in-Gait marker placement protocol. Joint kinetics was analyzed by using the inverse dynamics. Paired t-test and Kruskal-Wallis test was used to compare the differences of variables between two techniques, and among three different weights. Correlation coefficient was calculated to explain the role of lower limb joint motion in relation to the lumbar lordosis.</p> <p>Results</p> <p>There were not significant differences in maximum lumbar joint moments between two techniques. The hip and ankle contributed the most part of the support moment during squat lifting, and the knee flexion moment played an important role in stoop lifting. The hip, ankle and lumbar joints generated power and only the knee joint absorbed power in the squat lifting. The knee and ankle joints absorbed power, the hip and lumbar joints generated power in the stoop lifting. The bi-articular antagonist muscles' co-contraction around the knee joint during the squat lifting and the eccentric co-contraction of the gastrocnemius and the biceps femoris were found important for maintaining the straight leg during the stoop lifting. At the time of lordotic curvature appearance in the squat lifting, there were significant correlations in all three lower extremity joint moments with the lumbar joint. Differently, only the hip moment had significant correlation with the lumbar joint in the stoop lifting.</p> <p>Conclusion</p> <p>In conclusion, the knee extension which is prominent kinematics during the squat lifting was produced by the contributions of the kinetic factors from the hip and ankle joints(extensor moment and power generation) and the lumbar extension which is prominent kinematics during the stoop lifting could be produced by the contributions of the knee joint kinetic factors(flexor moment, power absorption, bi-articular muscle function).</p

    Lower extremity joint kinetics and lumbar curvature during squat and stoop lifting

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In this study, kinematics and kinetics of the lower extremity joint and the lumbar lordosis during two different symmetrical lifting techniques(squat and stoop) were examined using the three-dimensional motion analysis.</p> <p>Methods</p> <p>Twenty-six young male volunteers were selected for the subjects in this study. While they lifted boxes weighing 5, 10 and 15 kg by both squat and stoop lifting techniques, their motions were captured and analyzed using the 3D motion analysis system which was synchronized with two forceplates and the electromyographic system. Joint kinematics was determined by the forty-three reflective markers which were attached on the anatomical locations based on the VICON Plug-in-Gait marker placement protocol. Joint kinetics was analyzed by using the inverse dynamics. Paired t-test and Kruskal-Wallis test was used to compare the differences of variables between two techniques, and among three different weights. Correlation coefficient was calculated to explain the role of lower limb joint motion in relation to the lumbar lordosis.</p> <p>Results</p> <p>There were not significant differences in maximum lumbar joint moments between two techniques. The hip and ankle contributed the most part of the support moment during squat lifting, and the knee flexion moment played an important role in stoop lifting. The hip, ankle and lumbar joints generated power and only the knee joint absorbed power in the squat lifting. The knee and ankle joints absorbed power, the hip and lumbar joints generated power in the stoop lifting. The bi-articular antagonist muscles' co-contraction around the knee joint during the squat lifting and the eccentric co-contraction of the gastrocnemius and the biceps femoris were found important for maintaining the straight leg during the stoop lifting. At the time of lordotic curvature appearance in the squat lifting, there were significant correlations in all three lower extremity joint moments with the lumbar joint. Differently, only the hip moment had significant correlation with the lumbar joint in the stoop lifting.</p> <p>Conclusion</p> <p>In conclusion, the knee extension which is prominent kinematics during the squat lifting was produced by the contributions of the kinetic factors from the hip and ankle joints(extensor moment and power generation) and the lumbar extension which is prominent kinematics during the stoop lifting could be produced by the contributions of the knee joint kinetic factors(flexor moment, power absorption, bi-articular muscle function).</p

    A low-cost 2-D video system can accurately and reliably assess adaptive gait kinematics in healthy and low vision subjects

    Get PDF
    3-D gait analysis is the gold standard but many healthcare clinics and research institutes would benefit from a system that is inexpensive and simple but just as accurate. The present study examines whether a low-cost 2-D motion capture system can accurately and reliably assess adaptive gait kinematics in subjects with central vision loss, older controls, and younger controls. Subjects were requested to walk up and step over a 10 cm high obstacle that was positioned in the middle of a 4.5 m walkway. Four trials were simultaneously recorded with the Vicon motion capture system (3-D system) and a video camera that was positioned perpendicular to the obstacle (2-D system). The kinematic parameters (crossing height, crossing velocity, foot placement, single support time) were calculated offline. Strong Pearson's correlations were found between the two systems for all parameters (average r = 0.944, all p < 0.001). Bland-Altman analysis showed that the agreement between the two systems was good in all three groups after correcting for systematic biases related to the 2-D marker positions. The test-retest reliability for both systems was high (average ICC = 0.959). These results show that a low-cost 2-D video system can reliably and accurately assess adaptive gait kinematics in healthy and low vision subjects
    corecore