117 research outputs found

    The host ubiquitin-dependent segregase VCP/p97 is required for the onset of human cytomegalovirus replication

    Get PDF
    The human cytomegalovirus major immediate early proteins IE1 and IE2 are critical drivers of virus replication and are considered pivotal in determining the balance between productive and latent infection. IE1 and IE2 are derived from the same primary transcript by alternative splicing and regulation of their expression likely involves a complex interplay between cellular and viral factors. Here we show that knockdown of the host ubiquitin-dependent segregase VCP/p97, results in loss of IE2 expression, subsequent suppression of early and late gene expression and, ultimately, failure in virus replication. RNAseq analysis showed increased levels of IE1 splicing, with a corresponding decrease in IE2 splicing following VCP knockdown. Global analysis of viral transcription showed the expression of a subset of viral genes is not reduced despite the loss of IE2 expression, including UL112/113. Furthermore, Immunofluorescence studies demonstrated that VCP strongly colocalised with the viral replication compartments in the nucleus. Finally, we show that NMS-873, a small molecule inhibitor of VCP, is a potent HCMV antiviral with potential as a novel host targeting therapeutic for HCMV infection

    Computational approaches for modeling human intestinal absorption and permeability

    Get PDF
    Human intestinal absorption (HIA) is an important roadblock in the formulation of new drug substances. Computational models are needed for the rapid estimation of this property. The measurements are determined via in vivo experiments or in vitro permeability studies. We present several computational models that are able to predict the absorption of drugs by the human intestine and the permeability through human Caco-2 cells. The training and prediction sets were derived from literature sources and carefully examined to eliminate compounds that are actively transported. We compare our results to models derived by other methods and find that the statistical quality is similar. We believe that models derived from both sources of experimental data would provide greater consistency in predictions. The performance of several QSPR models that we investigated to predict outside the training set for either experimental property clearly indicates that caution should be exercised while applying any of the models for quantitative predictions. However, we are able to show that the qualitative predictions can be obtained with close to a 70% success rate

    Comparative Proteomics of Inner Membrane Fraction from Carbapenem-Resistant Acinetobacter baumannii with a Reference Strain

    Get PDF
    Acinetobacter baumannii has been identified by the Infectious Diseases Society of America as one of the six pathogens that cause majority of hospital infections. Increased resistance of A. baumannii even to the latest generation of Ξ²-lactams like carbapenem is an immediate threat to mankind. As inner-membrane fraction plays a significant role in survival of A. baumannii, we investigated the inner-membrane fraction proteome of carbapenem-resistant strain of A. baumannii using Differential In-Gel Electrophoresis (DIGE) followed by DeCyder, Progenesis and LC-MS/MS analysis. We identified 19 over-expressed and 4 down-regulated proteins (fold change>2, p<0.05) in resistant strain as compared to reference strain. Some of the upregulated proteins in resistant strain and their association with carbapenem resistance in A. baumannii are: i) Ξ²-lactamases, AmpC and OXA-51: cleave and inactivate carbapenem ii) metabolic enzymes, ATP synthase, malate dehydrogenase and 2-oxoglutarate dehydrogenase: help in increased energy production for the survival and iii) elongation factor Tu and ribosomal proteins: help in the overall protein production. Further, entry of carbapenem perhaps is limited by controlled production of OmpW and low levels of surface antigen help to evade host defence mechanism in developing resistance in A. baumannii. Present results support a model for the importance of proteins of inner-membrane fraction and their synergistic effect in the mediation of resistance of A. baumannii to carbapenem

    Financing intersectoral action for health: a systematic review of co-financing models.

    Get PDF
    BACKGROUND: Addressing the social and other non-biological determinants of health largely depends on policies and programmes implemented outside the health sector. While there is growing evidence on the effectiveness of interventions that tackle these upstream determinants, the health sector does not typically prioritise them. From a health perspective, they may not be cost-effective because their non-health outcomes tend to be ignored. Non-health sectors may, in turn, undervalue interventions with important co-benefits for population health, given their focus on their own sectoral objectives. The societal value of win-win interventions with impacts on multiple development goals may, therefore, be under-valued and under-resourced, as a result of siloed resource allocation mechanisms. Pooling budgets across sectors could ensure the total multi-sectoral value of these interventions is captured, and sectors' shared goals are achieved more efficiently. Under such a co-financing approach, the cost of interventions with multi-sectoral outcomes would be shared by benefiting sectors, stimulating mutually beneficial cross-sectoral investments. Leveraging funding in other sectors could off-set flat-lining global development assistance for health and optimise public spending. Although there have been experiments with such cross-sectoral co-financing in several settings, there has been limited analysis to examine these models, their performance and their institutional feasibility. AIM: This study aimed to identify and characterise cross-sectoral co-financing models, their operational modalities, effectiveness, and institutional enablers and barriers. METHODS: We conducted a systematic review of peer-reviewed and grey literature, following PRISMA guidelines. Studies were included if data was provided on interventions funded across two or more sectors, or multiple budgets. Extracted data were categorised and qualitatively coded. RESULTS: Of 2751 publications screened, 81 cases of co-financing were identified. Most were from high-income countries (93%), but six innovative models were found in Uganda, Brazil, El Salvador, Mozambique, Zambia, and Kenya that also included non-public and international payers. The highest number of cases involved the health (93%), social care (64%) and education (22%) sectors. Co-financing models were most often implemented with the intention of integrating services across sectors for defined target populations, although models were also found aimed at health promotion activities outside the health sector and cross-sectoral financial rewards. Interventions were either implemented and governed by a single sector or delivered in an integrated manner with cross-sectoral accountability. Resource constraints and political relevance emerged as key enablers of co-financing, while lack of clarity around the roles of different sectoral players and the objectives of the pooling were found to be barriers to success. Although rigorous impact or economic evaluations were scarce, positive process measures were frequently reported with some evidence suggesting co-financing contributed to improved outcomes. CONCLUSION: Co-financing remains in an exploratory phase, with diverse models having been implemented across sectors and settings. By incentivising intersectoral action on structural inequities and barriers to health interventions, such a novel financing mechanism could contribute to more effective engagement of non-health sectors; to efficiency gains in the financing of universal health coverage; and to simultaneously achieving health and other well-being related sustainable development goals

    Histone deacetylases in viral infections

    Get PDF
    Chromatin remodeling and gene expression are regulated by histone deacetylases (HDACs) that condense the chromatin structure by deacetylating histones. HDACs comprise a group of enzymes that are responsible for the regulation of both cellular and viral genes at the transcriptional level. In mammals, a total of 18 HDACs have been identified and grouped into four classes, i.e., class I (HDACs 1, 2, 3, 8), class II (HDACs 4, 5, 6, 7, 9, 10), class III (Sirt1–Sirt7), and class IV (HDAC11). We review here the role of HDACs on viral replication and how HDAC inhibitors could potentially be used as new therapeutic tools in several viral infections

    Circuit-based interrogation of sleep control.

    Get PDF
    Sleep is a fundamental biological process observed widely in the animal kingdom, but the neural circuits generating sleep remain poorly understood. Understanding the brain mechanisms controlling sleep requires the identification of key neurons in the control circuits and mapping of their synaptic connections. Technical innovations over the past decade have greatly facilitated dissection of the sleep circuits. This has set the stage for understanding how a variety of environmental and physiological factors influence sleep. The ability to initiate and terminate sleep on command will also help us to elucidate its functions within and beyond the brain

    The Energy Landscape Analysis of Cancer Mutations in Protein Kinases

    Get PDF
    The growing interest in quantifying the molecular basis of protein kinase activation and allosteric regulation by cancer mutations has fueled computational studies of allosteric signaling in protein kinases. In the present study, we combined computer simulations and the energy landscape analysis of protein kinases to characterize the interplay between oncogenic mutations and locally frustrated sites as important catalysts of allostetric kinase activation. While structurally rigid kinase core constitutes a minimally frustrated hub of the catalytic domain, locally frustrated residue clusters, whose interaction networks are not energetically optimized, are prone to dynamic modulation and could enable allosteric conformational transitions. The results of this study have shown that the energy landscape effect of oncogenic mutations may be allosteric eliciting global changes in the spatial distribution of highly frustrated residues. We have found that mutation-induced allosteric signaling may involve a dynamic coupling between structurally rigid (minimally frustrated) and plastic (locally frustrated) clusters of residues. The presented study has demonstrated that activation cancer mutations may affect the thermodynamic equilibrium between kinase states by allosterically altering the distribution of locally frustrated sites and increasing the local frustration in the inactive form, while eliminating locally frustrated sites and restoring structural rigidity of the active form. The energy landsape analysis of protein kinases and the proposed role of locally frustrated sites in activation mechanisms may have useful implications for bioinformatics-based screening and detection of functional sites critical for allosteric regulation in complex biomolecular systems

    Re-defining response and treatment effects for neuro-oncology immunotherapy clinical trials

    Full text link
    In much of medical oncology, including neuro-oncology, there is great interest to evaluate the therapeutic potential of immune-based therapies including vaccines, adoptive T cell strategies and modulators of immune checkpoint regulators such as cytotoxic T lymphocyte antigen 4 and programmed death 1. Immune-based treatments exert an indirect anti-tumor effect by generating potent, tumor-targeting immune responses. Robust anti-tumor immune responses have been shown to achieve encouraging radiographic responses across the spectrum of applied immunotherapeutics which are felt to be indicative of a bona fide anti-tumor effect. Conversely, worsening of imaging findings, particularly early in the course of immunotherapy administration, can be challenging to interpret with growing evidence demonstrating that at least a subset of such patients ultimately will derive meaningful clinical benefit. The immune related response criteria were generated to provide guidance regarding the interpretation of such complex imaging findings, for general medical oncologists prescribing immunotherapeutics. An analogous effort that addresses challenges associated with imaging assessment and incorporates nuances associated with neuro-oncology patients is underway and is referred to as the immunotherapy response assessment in neuro-oncology criteria
    • …
    corecore