2,649 research outputs found

    Weakening of the stratospheric polar vortex by Arctic sea-ice loss

    Get PDF
    Successive cold winters of severely low temperatures in recent years have had critical social and economic impacts on the mid-latitude continents in the Northern Hemisphere. Although these cold winters are thought to be partly driven by dramatic losses of Arctic sea-ice, the mechanism that links sea-ice loss to cold winters remains a subject of debate. Here, by conducting observational analyses and model experiments, we show how Arctic sea-ice loss and cold winters in extra-polar regions are dynamically connected through the polar stratosphere. We find that decreased sea-ice cover during early winter months (November-December), especially over the Barents-Kara seas, enhances the upward propagation of planetary-scale waves with wavenumbers of 1 and 2, subsequently weakening the stratospheric polar vortex in mid-winter (January-February). The weakened polar vortex preferentially induces a negative phase of Arctic Oscillation at the surface, resulting in low temperatures in mid-latitudes.open11167174Ysciescopu

    Synthesis of horizontally aligned ZnO nanowires localized at terrace edges and application for high sensitivity gas sensor

    Get PDF
    We developed step edge decoration method for the fabrication of semiconductor ZnO nanodots and nanowires using pulsed laser deposition. We synthesized high quality ZnO nanowires with the small diameter of about 20 nm and the uniform interval of about 80 nm between each nanowire, which has a simple structure for the formation of contact electrodes. The ZnO nanowire-based sensor was prepared only with the simple process of a gold electrode formation. The ZnO nanowire-based sensor exhibited the high surface-to-volume ratio of 58.6 mu m(-1) and the significantly high sensitivity of about 10 even for the low ethanol concentration of 0.2 ppm.open115860sciescopu

    Schr\"odinger Deformations of AdS_3 x S^3

    Full text link
    We study Schr\"odinger invariant deformations of the AdS_3 x S^3 x T^4 (or K3) solution of IIB supergravity and find a large class of solutions with integer and half-integer dynamical exponents. We analyze the supersymmetries preserved by our solutions and find an infinite number of solutions with four supersymmetries. We study the solutions holographically and find that the dual D1-D5 (or F1-NS5) CFT is deformed by irrelevant operators of spin one and two.Comment: 23 page

    Prospects for terahertz imaging the human skin cancer with the help of gold-nanoparticles-based terahertz-to-infrared converter

    Full text link
    The design is suggested, and possible operation parameters are discussed, of an instrument to inspect a skin cancer tumour in the terahertz (THz) range, transferring the image into the infrared (IR) and making it visible with the help of standard IR camera. The central element of the device is the THz-to-IR converter, a Teflon or silicon film matrix with embedded 8.5 nm diameter gold nanoparticles. The use of external THz source for irradiating the biological tissue sample is presumed. The converter's temporal characteristics enable its performance in a real-time scale. The details of design suited for the operation in transmission mode (in vitro) or on the human skin in reflection mode {in vivo) are specified.Comment: To be published in the proceedings of the FANEM2018 workshop - Minsk, 3-5 June 201

    Bulk properties of the van der Waals hard ferromagnet VI3

    Get PDF
    We present comprehensive measurements of the structural, magnetic, and electronic properties of layered van der Waals ferromagnet VI3 down to low temperatures. Despite belonging to a well-studied family of transition-metal trihalides, this material has received very little attention. We outline, from high-resolution powder x-ray diffraction measurements, a corrected room-temperature crystal structure to that previously proposed and uncover a structural transition at 79 K, also seen in the heat capacity. Magnetization measurements confirm VI3 to be a hard ferromagnet (9.1 kOe coercive field at 2 K) with a high degree of anisotropy, and the pressure dependence of the magnetic properties provide evidence for the two-dimensional nature of the magnetic order. Optical and electrical transport measurements show this material to be an insulator with an optical band gap of 0.67 eV - the previous theoretical predictions of d-band metallicity then lead us to believe VI3 to be a correlated Mott insulator. Our latest band-structure calculations support this picture and show good agreement with the experimental data. We suggest VI3 to host great potential in the thriving field of low-dimensional magnetism and functional materials, together with opportunities to study and make use of low-dimensional Mott physics

    Fermions and Type IIB Supergravity On Squashed Sasaki-Einstein Manifolds

    Full text link
    We discuss the dimensional reduction of fermionic modes in a recently found class of consistent truncations of type IIB supergravity compactified on squashed five-dimensional Sasaki-Einstein manifolds. We derive the lower dimensional equations of motion and effective action, and comment on the supersymmetry of the resulting theory, which is consistent with N=4 gauged supergravity in d=5d=5, coupled to two vector multiplets. We compute fermion masses by linearizing around two AdS5AdS_{5} vacua of the theory: one that breaks N=4 down to N=2 spontaneously, and a second one which preserves no supersymmetries. The truncations under consideration are noteworthy in that they retain massive modes which are charged under a U(1) subgroup of the RR-symmetry, a feature that makes them interesting for applications to condensed matter phenomena via gauge/gravity duality. In this light, as an application of our general results we exhibit the coupling of the fermions to the type IIB holographic superconductor, and find a consistent further truncation of the fermion sector that retains a single spin-1/2 mode.Comment: 43 pages, 2 figures, PDFLaTeX; v2: added references, typos corrected, minor change

    The effect of localized surface plasmon resonance on the emission color change in organic light emitting diodes

    Get PDF
    Three primary colors, cyan, yellow, and green, are obtained from Ag nano-dot embedded organic light emitting diodes (OLEDs) by localized surface plasmon resonance (LSPR). By changing the thickness of the Ag film, the size and spacing of Ag nano-dots are controlled. The generated light from the emissive layer in the OLEDs interacts with the free electrons near the surface of the Ag nano-dots, which leads to LSPR absorption and scattering. The UV-visible absorption spectra of glass/ITO/Ag nano-dot samples show intense peaks from 430 nm to 520 nm with an increase of Ag nano-dot size. And also, the Rayleigh scattering spectra results show the plasmon resonance wavelength in the range of 470-550 nm. The effect of the LSPR of Ag nano-dots on the change of emission color in OLEDs is demonstrated using 2 dimensional finite-difference time-domain simulations. The intensity of the electro-magnetic field in the sample with 5 nm-thick Ag is low at the incident wavelength of 500 nm, but it increases with the incident wavelength. This provides evidence that the emission color change in OLEDs originates from LSPR at the Ag nano-dots. As a result, the emission peak wavelength of OLEDs shifted toward longer wavelengths, from cyan to yellow-green, with the increase of Ag nano-dot size.open11107Nsciescopu

    Long-term annual primary production in the Ulleung Basin as a biological hot spot in the East/Japan Sea

    Get PDF
    Although the Ulleung Basin is an important biological hot spot in East/Japan Sea (hereafter the East Sea), very limited knowledge for seasonal and annual variations in the primary productivity exists. In this study, a recent decadal trend of primary production in the Ulleung Basin was analyzed based on MODIS-derived monthly primary production for a better annual production budget. Based on the MODIS-derived primary production, the mean daily primary productivity was 766.8 mg C m-2 d-1 (SD=+/- 196.7 mg C m-2 d-1) and the annual primary productivity was 280.2 g C m-2 yr-1 (SD=+/- 14.9 g C m-2 yr-1) in the Ulleung Basin during the study period. The monthly contributions of primary production were not largely variable among different months, and a relatively small interannual production variability was also observed in the Ulleung Basin, which indicates that the Ulleung Basin is a sustaining biologically productive region called as hot spot in the East Sea. However, a significant recent decline in the annual primary production was observed in the Ulleung Basin after 2006. Although no strong possibilities were found in this study, the current warming sea surface temperature and a negative phase PDO index were suggested for the recent declining primary production. For a better understanding of subsequent effects on marine ecosystems, more intensive interdisciplinary field studies will be required in the Ulleung Basin

    Charged Dilatonic AdS Black Branes in Arbitrary Dimensions

    Full text link
    We study electromagnetically charged dilatonic black brane solutions in arbitrary dimensions with flat transverse spaces, that are asymptotically AdS. This class of solutions includes spacetimes which possess a bulk region where the metric is approximately invariant under Lifshitz scalings. Given fixed asymptotic boundary conditions, we analyze how the behavior of the bulk up to the horizon varies with the charges and derive the extremality conditions for these spacetimes.Comment: References update

    Non-conformal Hydrodynamics in Einstein-dilaton Theory

    Full text link
    In the Einestein-dilaton theory with a Liouville potential parameterized by η\eta, we find a Schwarzschild-type black hole solution. This black hole solution, whose asymptotic geometry is described by the warped metric, is thermodynamically stable only for 0η<20 \le \eta < 2. Applying the gauge/gravity duality, we find that the dual gauge theory represents a non-conformal thermal system with the equation of state depending on η\eta. After turning on the bulk vector fluctuations with and without a dilaton coupling, we calculate the charge diffusion constant, which indicates that the life time of the quasi normal mode decreases with η\eta. Interestingly, the vector fluctuation with the dilaton coupling shows that the DC conductivity increases with temperature, a feature commonly found in electrolytes.Comment: 27 pages and 2 figures, published in JHE
    corecore