50 research outputs found

    What a Plant Sounds Like: The Statistics of Vegetation Echoes as Received by Echolocating Bats

    Get PDF
    A critical step on the way to understanding a sensory system is the analysis of the input it receives. In this work we examine the statistics of natural complex echoes, focusing on vegetation echoes. Vegetation echoes constitute a major part of the sensory world of more than 800 species of echolocating bats and play an important role in several of their daily tasks. Our statistical analysis is based on a large collection of plant echoes acquired by a biomimetic sonar system. We explore the relation between the physical world (the structure of the plant) and the characteristics of its echo. Finally, we complete the story by analyzing the effect of the sensory processing of both the echolocation and the auditory systems on the echoes and interpret them in the light of information maximization. The echoes of all different plant species we examined share a surprisingly robust pattern that was also reproduced by a simple Poisson model of the spatial reflector arrangement. The fine differences observed between the echoes of different plant species can be explained by the spatial characteristics of the plants. The bat's emitted signal enhances the most informative spatial frequency range where the species-specific information is large. The auditory system filtering affects the echoes in a similar way, thus enhancing the most informative spatial frequency range even more. These findings suggest how the bat's sensory system could have evolved to deal with complex natural echoes

    High transcript levels of vitamin D receptor are correlated with higher mRNA expression of human beta defensins and IL-10 in mucosa of HIV-1-exposed seronegative individuals

    Get PDF
    RESUMEN: La vitamina D (VitD) es un inmunomodulador endógena que podría proteger de la infección por VIH-1 la reducción de la activación inmune y la inducción de la expresión de VIH-1 anti-péptidos. Para establecer una correlación entre VitD y resistencia natural a la infección VIH-1, un estudio de casos y controles utilizando sangre y mucosa muestras de 58 VIH-1 expuesto, pero seronegativos (HESN) individuos , 43 VIH-1 seropositivos (SP) y 59 no controles sanos -exposed (HCS) se llevó a cabo. La concentración VitD en el plasma se determinó por ELISA, y de ARNm de unidades relativas (RU) de VDR, IL-10 , TGF-β, TNF-α e IL-1β en las células mononucleares de sangre periférica (PBMCs), oral y genital mucosa se cuantificó por QRT-PCR. mRNA niveles de humana beta -defensin (HBD) -2 y -3 se informó anteriormente y utilizados para correlaciones. Significativamente más altos niveles de VitD se encontraron en plasma, así como mayor mRNA RU de VDR en PBMCs, y en genital mucosa de HESN en comparación con HC. Además, superior mRNA RU de TNF-α, IL-1β y IL-10 , e inferior mRNA RU de TGF-β se encontraron en PBMC de HESNs en comparación con HC. También se observó mayor IL-10 mRNA RU en genital mucosa de HESNs en comparación con HC, y los ARNm de los niveles de TNF-α en oral y genital mucosa de SPs estábamos más alta en comparación con HESNs. Por otra parte, las correlaciones positivas entre VDR y la IL-10 mRNA RU en PBMCs y genital mucosa encontrados de HESNs. Por último, HBD-2 y HBD-3 ARNm RU fueron positivamente correlacionadas con VDR mRNA expresión en forma oral mucosa de HESNs. Estos resultados sugieren que los altos niveles de VitD y su receptor están asociadas con resistencia natural a la infección por VIH-1. Sobre regulación de los anti-inflamatoria IL-10 , y la inducción de anti-VIH-1 defensinas en la mucosa podría ser parte de los mecanismos implicados en esta asociación. Sin embargo, se necesitan más estudios para definir las asociaciones causales.ABSTRACT: Vitamin D (VitD) is an endogenous immunomodulator that could protect from HIV-1 infection reducing immune activation and inducing the expression of anti-HIV-1 peptides. To establish a correlation between VitD and natural resistance to HIV-1 infection, a case-control study using blood and mucosa samples of 58 HIV-1-exposed but seronegative (HESN) individuals, 43 HIV-1 seropositives (SPs) and 59 non-exposed healthy controls (HCs) was carried out. The VitD concentration in plasma was determined by ELISA, and mRNA relative units (RU) of VDR, IL-10, TGF-β, TNF-α and IL-1β in peripheral blood mononuclear cells (PBMCs), oral and genital mucosa was quantified by qRT-PCR. mRNA levels of human beta-defensin (HBD) -2 and -3 were previously reported and used for correlations. Significantly higher levels of VitD were found in plasma as well as higher mRNA RU of VDR in PBMCs, and in genital mucosa from HESN compared to HCs. In addition, higher mRNA RU of TNF-α, IL-1β and IL-10, and lower mRNA RU of TGF-β were found in PBMC from HESNs compared to HCs. We also observed higher IL-10 mRNA RU in genital mucosa of HESNs compared to HCs, and the mRNA levels of TNF-α in oral and genital mucosa of SPs were higher compared to HESNs. Furthermore, positive correlations between VDR and IL-10 mRNA RU in PBMCs and genital mucosa of HESNs were found. Finally, HBD-2 and HBD-3 mRNA RU were positively correlated with VDR mRNA expression in oral mucosa from HESNs. These results suggest that high levels of VitD and its receptor are associated with natural resistance to HIV-1 infection. Up-regulation of the anti-inflammatory IL-10, and the induction of anti-HIV-1 defensins in mucosa might be part of the mechanisms involved in this association. However, further studies are required to define causal associations

    Fenofibrate Reduces Mortality and Precludes Neurological Deficits in Survivors in Murine Model of Japanese Encephalitis Viral Infection

    Get PDF
    Background: Japanese encephalitis (JE), the most common form of viral encephalitis occurs periodically in endemic areas leading to high mortality and neurological deficits in survivors. It is caused by a flavivirus, Japanese encephalitis virus (JEV), which is transmitted to humans through mosquitoes. No effective cure exists for reducing mortality and morbidity caused by JEV infection, which is primarily due to excessive inflammatory response. Fenofibrate, a peroxisome proliferator-activated receptor-a (PPARa) agonist is known to resolve inflammation by repressing nuclear factor-kB (NF-kB) and enhancing transcription of anti-oxidant and anti-inflammatory genes. In addition, fenofibrate also up-regulates a class of proteins, cytochrome P4504Fs (Cyp4fs), which are involved in detoxification of the potent pro-inflammatory eicosanoid, leukotriene B4 (LTB4) to 20-hydroxy LTB4. Methodology/Principal Findings: The neuroprotective effect of fenofibrate was examined using in vitro (BV-2 microglial cell line) and in vivo (BALB/c mice) models of JEV infection. Mice were treated with fenofibrate for 2 or 4 days prior to JEV exposure. Pretreatment with fenofibrate for 4 but not 2 days reduced mortality by 80 % and brain LTB4 levels decreased concomitantly with the induction of Cyp4f15 and 4f18, which catalyze detoxification of LTB4 through hydroxylation. Expression of cytokines and chemokine decreased significantly as did microglial activation and replication of the JEV virus. Conclusions/Significance: Fenofibrate confers neuroprotection against Japanese encephalitis, in vivo, in mouse model o

    Insensitivity to pain induced by a potent selective closed-state Nav1.7 inhibitor

    No full text
    Pain places a devastating burden on patients and society and current pain therapeutics exhibit limitations in efficacy, unwanted side effects and the potential for drug abuse and diversion. Although genetic evidence has clearly demonstrated that the voltage-gated sodium channel, Nav1.7, is critical to pain sensation in mammals, pharmacological inhibitors of Nav1.7 have not yet fully recapitulated the dramatic analgesia observed in Nav1.7-null subjects. Using the tarantula venom-peptide ProTX-II as a scaffold, we engineered a library of over 1500 venom-derived peptides and identified JNJ63955918 as a potent, highly selective, closed-state Nav1.7 blocking peptide. Here we show that JNJ63955918 induces a pharmacological insensitivity to pain that closely recapitulates key features of the Nav1.7-null phenotype seen in mice and humans. Our findings demonstrate that a high degree of selectivity, coupled with a closed-state dependent mechanism of action is required for strong efficacy and indicate that peptides such as JNJ63955918 and other suitably optimized Nav1.7 inhibitors may represent viable non-opioid alternatives for the pharmacological treatment of severe pain

    Ontogeny of MAP kinases in rat small intestine: premature stimulation by insulin of BBM hydrolases is regulated by ERKs but not by p-38 MAP kinase.

    No full text
    Although mitogen-activating protein (MAP) kinases are crucial signal transduction molecules regulating cellular proliferation, differentiation, and morphology, their ontogenic changes in the small intestine have not been analyzed. Also, it remains unknown which pathway of activated MAP kinases regulates the expression of brush border membrane hydrolases during growth. Therefore, we have analyzed the mucosal distribution, ontogeny, and responses to insulin and to inhibitors of p44, p42, and p38 MAP kinases in immature and mature enterocytes using Western blot analysis and autoradiography after immunoprecipitation, immunohistochemistry, and in vitro phosphorylation assays. Between d 10 and 40 postpartum, diphosphorylated active p44/p42 extracellular regulated protein kinases (ERKs) increased in abundance compared with total immunoprecipitated ERKs, and were highly responsive to exogenous insulin. In concordance, ERK total activity increased by 4-fold during the same period of growth and was further enhanced 2-fold by exogenous insulin. In weaning rats, ERKs were mainly located in membranes of villus cells and with less intensity in crypt cells. By contrast, p38 MAP kinase was unresponsive to insulin and was confined to nuclei. Administration to sucklings of PD 098059, a specific inhibitor of ERKs, not only inhibited the premature stimulation of sucrase, lactase, and maltase total activities in response to exogenous insulin, but also depressed the natural expression of these brush border membrane enzymes in the absence of insulin stimulation. In concordance, administration of SB 203580, a specific inhibitor of p38 MAP kinase, failed to inhibit both the response of brush border membrane hydrolases to insulin and their natural expression in the absence of insulin stimulation. We conclude that the ontogenic expression of brush border membrane hydrolases and their premature stimulation by insulin are regulated at least in part by the activation of p44/p42 ERKs but not by p38 MAP kinase
    corecore