27 research outputs found

    AMS INSIGHT—Absorbable Metal Stent Implantation for Treatment of Below-the-Knee Critical Limb Ischemia: 6-Month Analysis

    Get PDF
    Endoluminal treatment of infrapopliteal artery lesions is a matter of controversy. Bioabsorbable stents are discussed as a means to combine mechanical prevention of vessel recoil with the advantages of long-term perspectives. The possibility of not having a permanent metallic implant could permit the occurrence of positive remodeling with lumen enlargement to compensate for the development of new lesions. The present study was designed to investigate the safety of absorbable metal stents (AMSs) in the infrapopliteal arteries based on 1- and 6-month clinical follow-up and efficacy based on 6-month angiographic patency. One hundred seventeen patients with 149 lesions with chronic limb ischemia (CLI) were randomized to implantation of an AMS (60 patients, 74 lesions) or stand-alone percutaneous transluminal angioplasty (PTA; 57 patients, 75 lesions). Seven PTA-group patients “crossed over” to AMS stenting. The study population consisted of patients with symptomatic CLI (Rutherford categories 4 and 5) and de novo stenotic (>50%) or occlusive atherosclerotic disease of the infrapopliteal arteries who presented with a reference diameter of between 3.0 and 3.5 mm and a lesion length of <15 mm. The primary safety endpoint was defined as absence of major amputation and/or death within 30 days after index intervention and the primary efficacy endpoint was the 6-month angiographic patency rate as confirmed by core-lab quantitative vessel analysis. The 30-day complication rate was 5.3% (3/57) and 5.0% (3/60) in patients randomized for PTA alone and PTA followed by AMS implantation, respectively. On an intention-to-treat basis, the 6-month angiographic patency rate for lesions treated with AMS (31.8%) was significantly lower (p = 0.013) than the rate for those treated with PTA (58.0%). Although the present study indicates that the AMS technology can be safely applied, it did not demonstrate efficacy in long-term patency over standard PTA in the infrapopliteal vessels

    Effect of Peripheral 5-HT on Glucose and Lipid Metabolism in Wether Sheep

    Get PDF
    In mice, peripheral 5-HT induces an increase in the plasma concentrations of glucose, insulin and bile acids, and a decrease in plasma triglyceride, NEFA and cholesterol concentrations. However, given the unique characteristics of the metabolism of ruminants relative to monogastric animals, the physiological role of peripheral 5-HT on glucose and lipid metabolism in sheep remains to be established. Therefore, in this study, we investigated the effect of 5-HT on the circulating concentrations of metabolites and insulin using five 5-HT receptor (5HTR) antagonists in sheep. After fasting for 24 h, sheep were intravenously injected with 5-HT, following which-, plasma glucose, insulin, triglyceride and NEFA concentrations were significantly elevated. In contrast, 5-HT did not affect the plasma cholesterol concentration, and it induced a decrease in bile acid concentrations. Increases in plasma glucose and insulin concentrations induced by 5-HT were attenuated by pre-treatment with Methysergide, a 5HTR 1, 2 and 7 antagonist. Additionally, decreased plasma bile acid concentrations induced by 5-HT were blocked by pre-treatment with Ketanserin, a 5HTR 2A antagonist. However, none of the 5HTR antagonists inhibited the increase in plasma triglyceride and NEFA levels induced by 5-HT. On the other hand, mRNA expressions of 5HTR1D and 1E were observed in the liver, pancreas and skeletal muscle. These results suggest that there are a number of differences in the physiological functions of peripheral 5-HT with respect to lipid metabolism between mice and sheep, though its effect on glucose metabolism appears to be similar between these species

    Microbiome to Brain:Unravelling the Multidirectional Axes of Communication

    Get PDF
    The gut microbiome plays a crucial role in host physiology. Disruption of its community structure and function can have wide-ranging effects making it critical to understand exactly how the interactive dialogue between the host and its microbiota is regulated to maintain homeostasis. An array of multidirectional signalling molecules is clearly involved in the host-microbiome communication. This interactive signalling not only impacts the gastrointestinal tract, where the majority of microbiota resides, but also extends to affect other host systems including the brain and liver as well as the microbiome itself. Understanding the mechanistic principles of this inter-kingdom signalling is fundamental to unravelling how our supraorganism function to maintain wellbeing, subsequently opening up new avenues for microbiome manipulation to favour desirable mental health outcome
    corecore