42 research outputs found

    Complement C1 Esterase Inhibitor Levels Linked to Infections and Contaminated Heparin-Associated Adverse Events

    Get PDF
    Activation of kinin-kallikrein and complement pathways by oversulfated-chondroitin-sulfate (OSCS) has been linked with recent heparin-associated adverse clinical events. Given the fact that the majority of patients who received contaminated heparin did not experience an adverse event, it is of particular importance to determine the circumstances that increase the risk of a clinical reaction. In this study, we demonstrated by both the addition and affinity depletion of C1inh from normal human plasma, that the level of C1inh in the plasma has a great impact on the OSCS-induced kallikrein activity and its kinetics. OSCS-induced kallikrein activity was dramatically increased after C1inh was depleted, while the addition of C1inh completely attenuated kallikrein activity. In addition, actual clinical infection can lead to increased C1inh levels. Plasma from patients with sepsis had higher average levels of functional C1inh and decreased OSCS-induced kallikrein activity. Lastly, descriptive data on adverse event reports suggest cases likely to be associated with contaminated heparin are inversely correlated with infection. Our data suggest that low C1inh levels can be a risk factor and high levels can be protective. The identification of risk factors for contact system-mediated adverse events may allow for patient screening and clinical development of prophylaxis and treatments

    Cattle Mammary Bioreactor Generated by a Novel Procedure of Transgenic Cloning for Large-Scale Production of Functional Human Lactoferrin

    Get PDF
    Large-scale production of biopharmaceuticals by current bioreactor techniques is limited by low transgenic efficiency and low expression of foreign proteins. In general, a bacterial artificial chromosome (BAC) harboring most regulatory elements is capable of overcoming the limitations, but transferring BAC into donor cells is difficult. We describe here the use of cattle mammary bioreactor to produce functional recombinant human lactoferrin (rhLF) by a novel procedure of transgenic cloning, which employs microinjection to generate transgenic somatic cells as donor cells. Bovine fibroblast cells were co-microinjected for the first time with a 150-kb BAC carrying the human lactoferrin gene and a marker gene. The resulting transfection efficiency of up to 15.79×10−2 percent was notably higher than that of electroporation and lipofection. Following somatic cell nuclear transfer, we obtained two transgenic cows that secreted rhLF at high levels, 2.5 g/l and 3.4 g/l, respectively. The rhLF had a similar pattern of glycosylation and proteolytic susceptibility as the natural human counterpart. Biochemical analysis revealed that the iron-binding and releasing properties of rhLF were identical to that of native hLF. Importantly, an antibacterial experiment further demonstrated that rhLF was functional. Our results indicate that co-microinjection with a BAC and a marker gene into donor cells for somatic cell cloning indeed improves transgenic efficiency. Moreover, the cattle mammary bioreactors generated with this novel procedure produce functional rhLF on an industrial scale

    Circulating Nucleosomes and Neutrophil Activation as Risk Factors for Deep Vein Thrombosis

    No full text

    SELECTIVE KALLIKREIN INHIBITORS ALTER HUMAN NEUTROPHIL ELASTASE RELEASE DURING EXTRACORPOREAL-CIRCULATION

    No full text
    WACHTFOGEL YT, HACK CE, NUIJENS JH, et al. SELECTIVE KALLIKREIN INHIBITORS ALTER HUMAN NEUTROPHIL ELASTASE RELEASE DURING EXTRACORPOREAL-CIRCULATION. AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY. 1995;268(3):H1352-H1357.Cardiopulmonary bypass causes hemorrhagic complications and initiates a biochemical and cellular ''whole body inflammatory response.'' This study investigates whether a variety of selective inhibitors of the contact pathway of intrinsic coagulation modulate complement and neutrophil activation during simulated extracorporeal circulation. After 60 min of recirculation in the presence of the slow tight-binding boronic acid inhibitor, Bz-Pro-Phe-boroArg-OH (10.7 mu M), complete inhibition of kallikrein-C (1) over bar-inhibitor complex formation and marked inhibition of C (1) over bar-C (1) over bar-inhibitor complex formation and the release of human neutrophil elastase were observed. Arg(15)-aprotinin (3.1 mu M), Ala(357),Arg(358) alpha(1)-antitrypsin (2.6 mu M), and soybean trypsin inhibitor (48.0 mu M) either completely or partially inhibited the generation of kallikrein C (1) over bar-inhibitor complexes but were less effective inhibitors of human neutrophil elastase release. The second-order rate constants for the inhibition of kallikrein in purified systems are consistent with the order of effectiveness of the inhibitors in blocking human neutrophil elastase release in heparinized blood. Our results suggest that low-molecular-weight selective inhibitors of kallikrein may be effective agents in the attenuation of the contact-mediated inflammatory response in cardiopulmonary bypass

    Inhibition of classical complement activation attenuates liver ischaemia and reperfusion injury in a rat model

    No full text
    Activation of the complement system contributes to the pathogenesis of ischaemia/reperfusion (I/R) injury. We evaluated inhibition of the classical pathway of complement using C1-inhibitor (C1-inh) in a model of 70% partial liver I/R injury in male Wistar rats (n = 35). C1-inh was administered at 100, 200 or 400 IU/kg bodyweight, 5 min before 60 min ischaemia (pre-I) or 5 min before 24 h reperfusion (end-I). One hundred IU/kg bodyweight significantly reduced the increase of plasma levels of activated C4 as compared to albumin-treated control rats and attenuated the increase of alanine aminotransferase (ALT). These effects were not better with higher doses of C1-inh. Administration of C1-inh pre-I resulted in lower ALT levels and higher bile secretion after 24 h of reperfusion than administration at end-I. Immunohistochemical assessment indicated that activated C3, the membrane attack complex C5b9 and C-reactive protein (CRP) colocalized in hepatocytes within midzonal areas, suggesting CRP is a mediator of I/R-induced, classical complement activation in rats. Pre-ischaemic administration of C1-inh is an effective pharmacological intervention to protect against liver I/R injury
    corecore