406 research outputs found

    The UK register of HIV seroconverters: Methods and analytical issues

    Get PDF
    A Register of HIV-infected persons who have had a negative antibody test within 3 years of their first antibody positive test (seroconverters) is being set up in the UK to monitor the distribution of times from HIV seroconversion to AIDS (the incubation period) and to death. It will also provide a national resource for use by those designing studies in this group of individuals. Clinicians caring for HIV-positive persons in Genito-Urinary Medicine, Infectious Disease and other departments throughout the UK were asked to participate by providing information on eligible subjects. Most laboratories undertaking HIV antibody testing were also contacted and asked to provide the name of the attending clinician for all seroconverters identified through the HIV laboratory reporting systems of the PHLS Communicable Disease Surveillance Centre (CDSC) and the Scottish Centre for Infection and Environmental Health (SCIEH) and for any other seroconverters known to them but not identified by CDSC or SCIEH. Data items sought for the Register include: sex, ethnic group, probable route of HIV transmission, annual CD4 counts, details of therapy and prophylaxis prescribed, AIDS-defining events and vital status. Follow up information is collected annually. Wherever possible, all seroconverters known to a clinic have been identified, whether currently alive or dead, either from clinic records or laboratory reporting or both. The objective is to establish and update a complete register of seroconverters on a long-term basis to provide reliable estimates of the incubation period on which future projections of AIDS cases in the UK can be made

    Variable selection: current practice in epidemiological studies

    Get PDF
    Selection of covariates is among the most controversial and difficult tasks in epidemiologic analysis. Correct variable selection addresses the problem of confounding in etiologic research and allows unbiased estimation of probabilities in prognostic studies. The aim of this commentary is to assess how often different variable selection techniques were applied in contemporary epidemiologic analysis. It was of particular interest to see whether modern methods such as shrinkage or penalized regression were used in recent publications. Stepwise selection methods remained the predominant method for variable selection in publications in epidemiological journals in 2008. Shrinkage methods were not used in any of the reviewed articles. Editors, reviewers and authors have insufficiently promoted the new, less controversial approaches of variable selection in the biomedical literature, whereas statisticians may not have adequately addressed the method’s feasibility

    Saccharomyces cerevisiae: Population Divergence and Resistance to Oxidative Stress in Clinical, Domesticated and Wild Isolates

    Get PDF
    BACKGROUND: Saccharomyces cerevisiae has been associated with human life for millennia in the brewery and bakery. Recently it has been recognized as an emerging opportunistic pathogen. To study the evolutionary history of S. cerevisiae, the origin of clinical isolates and the importance of a virulence-associated trait, population genetics and phenotypic assays have been applied to an ecologically diverse set of 103 strains isolated from clinics, breweries, vineyards, fruits, soil, commercial supplements and insect guts. METHODOLOGY/PRINCIPAL FINDINGS: DNA sequence data from five nuclear DNA loci were analyzed for population structure and haplotype distribution. Additionally, all strains were tested for survival of oxidative stress, a trait associated with microbial pathogenicity. DNA sequence analyses identified three genetic subgroups within the recombining S. cerevisiae strains that are associated with ecology, geography and virulence. Shared alleles suggest that the clinical isolates contain genetic contribution from the fruit isolates. Clinical and fruit isolates exhibit high levels of recombination, unlike the genetically homogenous soil isolates in which no recombination was detected. However, clinical and soil isolates were more resistant to oxidative stress than any other population, suggesting a correlation between survival in oxidative stress and yeast pathogenicity. CONCLUSIONS/SIGNIFICANCE: Population genetic analyses of S. cerevisiae delineated three distinct groups, comprising primarily the (i) human-associated brewery and vineyard strains, (ii) clinical and fruit isolates (iii) and wild soil isolates from eastern U.S. The interactions between S. cerevisiae and humans potentiate yeast evolution and the development of genetically, ecologically and geographically divergent groups

    A Salmonella Small Non-Coding RNA Facilitates Bacterial Invasion and Intracellular Replication by Modulating the Expression of Virulence Factors

    Get PDF
    Small non-coding RNAs (sRNAs) that act as regulators of gene expression have been identified in all kingdoms of life, including microRNA (miRNA) and small interfering RNA (siRNA) in eukaryotic cells. Numerous sRNAs identified in Salmonella are encoded by genes located at Salmonella pathogenicity islands (SPIs) that are commonly found in pathogenic strains. Whether these sRNAs are important for Salmonella pathogenesis and virulence in animals has not been reported. In this study, we provide the first direct evidence that a pathogenicity island-encoded sRNA, IsrM, is important for Salmonella invasion of epithelial cells, intracellular replication inside macrophages, and virulence and colonization in mice. IsrM RNA is expressed in vitro under conditions resembling those during infection in the gastrointestinal tract. Furthermore, IsrM is found to be differentially expressed in vivo, with higher expression in the ileum than in the spleen. IsrM targets the mRNAs coding for SopA, a SPI-1 effector, and HilE, a global regulator of the expression of SPI-1 proteins, which are major virulence factors essential for bacterial invasion. Mutations in IsrM result in disregulation of expression of HilE and SopA, as well as other SPI-1 genes whose expression is regulated by HilE. Salmonella with deletion of isrM is defective in bacteria invasion of epithelial cells and intracellular replication/survival in macrophages. Moreover, Salmonella with mutations in isrM is attenuated in killing animals and defective in growth in the ileum and spleen in mice. Our study has shown that IsrM sRNA functions as a pathogenicity island-encoded sRNA directly involved in Salmonella pathogenesis in animals. Our results also suggest that sRNAs may represent a distinct class of virulence factors that are important for bacterial infection in vivo

    Expression variability of co-regulated genes differentiates Saccharomyces cerevisiae strains

    Get PDF
    Background: Saccharomyces cerevisiae (Baker’s yeast) is found in diverse ecological niches and is characterized by high adaptive potential under challenging environments. In spite of recent advances on the study of yeast genome diversity, little is known about the underlying gene expression plasticity. In order to shed new light onto this biological question, we have compared transcriptome profiles of five environmental isolates, clinical and laboratorial strains at different time points of fermentation in synthetic must medium, during exponential and stationary growth phases. Results: Our data unveiled diversity in both intensity and timing of gene expression. Genes involved in glucose metabolism and in the stress response elicited during fermentation were among the most variable. This gene expression diversity increased at the onset of stationary phase (diauxic shift). Environmental isolates showed lower average transcript abundance of genes involved in the stress response, assimilation of nitrogen and vitamins, and sulphur metabolism, than other strains. Nitrogen metabolism genes showed significant variation in expression among the environmental isolates. Conclusions: Wild type yeast strains respond differentially to the stress imposed by nutrient depletion, ethanol accumulation and cell density increase, during fermentation of glucose in synthetic must medium. Our results support previous data showing that gene expression variability is a source of phenotypic diversity among closely related organisms.Fundação para a Ciência e TecnologiaThe authors wish to thank Adega Cooperativa da Bairrada, Cantanhede, Portugal, for providing the commercial strains

    Genomic Instability Is Associated with Natural Life Span Variation in Saccharomyces cerevisiae

    Get PDF
    Increasing genomic instability is associated with aging in eukaryotes, but the connection between genomic instability and natural variation in life span is unknown. We have quantified chronological life span and loss-of-heterozygosity (LOH) in 11 natural isolates of Saccharomyces cerevisiae. We show that genomic instability increases and mitotic asymmetry breaks down during chronological aging. The age-dependent increase of genomic instability generally lags behind the drop of viability and this delay accounts for ∼50% of the observed natural variation of replicative life span in these yeast isolates. We conclude that the abilities of yeast strains to tolerate genomic instability co-vary with their replicative life spans. To the best of our knowledge, this is the first quantitative evidence that demonstrates a link between genomic instability and natural variation in life span

    Musculoskeletal disorders in shipyard industry: prevalence, health care use, and absenteeism

    Get PDF
    BACKGROUND: It is unclear whether the well-known risk factors for the occurrence of musculoskeletal disorders (MSD) also play an important role in the determining consequences of MSD in terms of sickness absence and health care use. METHODS: A cross-sectional study was conducted among 853 shipyard employees. Data were collected by questionnaire on physical and psychosocial workload, need for recovery, perceived general health, occurrence of musculoskeletal complaints, and health care use during the past year. Retrospective data on absenteeism were also available from the company register. RESULTS: In total, 37%, 22%, and 15% of employees reported complaints of low back, shoulder/neck, and hand/wrist during the past 12 months, respectively. Among all employees with at least one MSD, 27% visited a physician at least once and 20% took at least one period of sick leave. Various individual and work-related factors were associated with the occurrence of MSD. Health care use and absenteeism were strongest influenced by chronicity of musculoskeletal complaints and comorbidity with other musculoskeletal complaints and, to a lesser extent, by work-related factors. CONCLUSION: In programmes aimed at preventing the unfavourable consequences of MSD in terms of sickness absence and health care use it is important to identify the (individual) factors that determine the development of chronicity of complaints. These factors may differ from the well-know risk factors for the occurrence of MSD that are targeted in primary prevention

    Analysis of Interactions of Salmonella Type Three Secretion Mutants with 3-D Intestinal Epithelial Cells

    Get PDF
    The prevailing paradigm of Salmonella enteropathogenesis based on monolayers asserts that Salmonella pathogenicity island-1 Type Three Secretion System (SPI-1 T3SS) is required for bacterial invasion into intestinal epithelium. However, little is known about the role of SPI-1 in mediating gastrointestinal disease in humans. Recently, SPI-1 deficient nontyphoidal Salmonella strains were isolated from infected humans and animals, indicating that SPI-1 is not required to cause enteropathogenesis and demonstrating the need for more in vivo-like models. Here, we utilized a previously characterized 3-D organotypic model of human intestinal epithelium to elucidate the role of all characterized Salmonella enterica T3SSs. Similar to in vivo reports, the Salmonella SPI-1 T3SS was not required to invade 3-D intestinal cells. Additionally, Salmonella strains carrying single (SPI-1 or SPI-2), double (SPI-1/2) and complete T3SS knockout (SPI-1/SPI-2: flhDC) also invaded 3-D intestinal cells to wildtype levels. Invasion of wildtype and TTSS mutants was a Salmonella active process, whereas non-invasive bacterial strains, bacterial size beads, and heat-killed Salmonella did not invade 3-D cells. Wildtype and T3SS mutants did not preferentially target different cell types identified within the 3-D intestinal aggregates, including M-cells/M-like cells, enterocytes, or Paneth cells. Moreover, each T3SS was necessary for substantial intracellular bacterial replication within 3-D cells. Collectively, these results indicate that T3SSs are dispensable for Salmonella invasion into highly differentiated 3-D models of human intestinal epithelial cells, but are required for intracellular bacterial growth, paralleling in vivo infection observations and demonstrating the utility of these models in predicting in vivo-like pathogenic mechanisms
    corecore