2,843 research outputs found
Global aspects of the space of 6D N = 1 supergravities
We perform a global analysis of the space of consistent 6D quantum gravity
theories with N = 1 supersymmetry, including models with multiple tensor
multiplets. We prove that for theories with fewer than T = 9 tensor multiplets,
a finite number of distinct gauge groups and matter content are possible. We
find infinite families of field combinations satisfying anomaly cancellation
and admitting physical gauge kinetic terms for T > 8. We find an integral
lattice associated with each apparently-consistent supergravity theory; this
lattice is determined by the form of the anomaly polynomial. For models which
can be realized in F-theory, this anomaly lattice is related to the
intersection form on the base of the F-theory elliptic fibration. The condition
that a supergravity model have an F-theory realization imposes constraints
which can be expressed in terms of this lattice. The analysis of models which
satisfy known low-energy consistency conditions and yet violate F-theory
constraints suggests possible novel constraints on low-energy supergravity
theories.Comment: 41 pages, 1 figur
The future of pharmacogenetics in the treatment of heart failure
Heart failure is a common disease with high levels of morbidity and mortality. Current treatment comprises β-blockers, ACE inhibitors, aldosterone antagonists and diuretics. Variation in clinical response seen in patients begs the question of whether there is a pharmacogenetic component yet to be identified. To date, the genes most studied involve the β-1, β-2, α-2 adrenergic receptors and the renin-angiotensin-aldosterone pathway, mainly focusing on SNPs. However results have been inconsistent. Genome-wide association studies and next-generation sequencing are seen as alternative approaches to discovering genetic variations influencing drug response. Hopefully future research will lay the foundations for genotype-led drug management in these patients with the ultimate aim of improving their clinical outcome.</p
F-Theory and the Mordell-Weil Group of Elliptically-Fibered Calabi-Yau Threefolds
The Mordell-Weil group of an elliptically fibered Calabi-Yau threefold X
contains information about the abelian sector of the six-dimensional theory
obtained by compactifying F-theory on X. After examining features of the
abelian anomaly coefficient matrix and U(1) charge quantization conditions of
general F-theory vacua, we study Calabi-Yau threefolds with Mordell-Weil
rank-one as a first step towards understanding the features of the Mordell-Weil
group of threefolds in more detail. In particular, we generate an interesting
class of F-theory models with U(1) gauge symmetry that have matter with both
charges 1 and 2. The anomaly equations --- which relate the Neron-Tate height
of a section to intersection numbers between the section and fibral rational
curves of the manifold --- serve as an important tool in our analysis.Comment: 29 pages + appendices, 5 figures; v2: minor correction
Six-dimensional (1,0) effective action of F-theory via M-theory on Calabi-Yau threefolds
The six-dimensional effective action of F-theory compactified on a singular
elliptically fibred Calabi-Yau threefold is determined by using an M-theory
lift. The low-energy data are derived by comparing a circle reduction of a
general six-dimensional (1,0) gauged supergravity theory with the effective
action of M-theory on the resolved Calabi-Yau threefold. The derivation
includes six-dimensional tensor multiplets for which the (anti-) self-duality
constraints are imposed on the level of the five-dimensional action. The vector
sector of the reduced theory is encoded by a non-standard potential due to the
Green-Schwarz term in six dimensions. This Green-Schwarz term also contains
higher curvature couplings which are considered to establish the full map
between anomaly coefficients and geometry. F-/M-theory duality is exploited by
moving to the five-dimensional Coulomb branch after circle reduction and
integrating out massive vector multiplets and matter hypermultiplets. The
associated fermions then generate additional Chern-Simons couplings at
one-loop. Further couplings involving the graviphoton are induced by quantum
corrections due to excited Kaluza-Klein modes. On the M-theory side integrating
out massive fields corresponds to resolving the singularities of the Calabi-Yau
threefold, and yields intriguing relations between six-dimensional anomalies
and classical topology.Comment: 55 pages, v2: typos corrected, discussion of loop corrections
improve
Who Watches the Watchmen? An Appraisal of Benchmarks for Multiple Sequence Alignment
Multiple sequence alignment (MSA) is a fundamental and ubiquitous technique
in bioinformatics used to infer related residues among biological sequences.
Thus alignment accuracy is crucial to a vast range of analyses, often in ways
difficult to assess in those analyses. To compare the performance of different
aligners and help detect systematic errors in alignments, a number of
benchmarking strategies have been pursued. Here we present an overview of the
main strategies--based on simulation, consistency, protein structure, and
phylogeny--and discuss their different advantages and associated risks. We
outline a set of desirable characteristics for effective benchmarking, and
evaluate each strategy in light of them. We conclude that there is currently no
universally applicable means of benchmarking MSA, and that developers and users
of alignment tools should base their choice of benchmark depending on the
context of application--with a keen awareness of the assumptions underlying
each benchmarking strategy.Comment: Revie
Associations of sedentary behaviour, physical activity, blood pressure and anthropometric measures with cardiorespiratory fitness in children with cerebral palsy
Background - Children with cerebral palsy (CP) have poor cardiorespiratory fitness in comparison to their peers with typical development, which may be due to low levels of physical activity. Poor cardiorespiratory fitness may contribute to increased cardiometabolic risk. Purpose - The aim of this study was to determine the association between sedentary behaviour, physical activity and cardiorespiratory fitness in children with CP. An objective was to determine the association between cardiorespiratory fitness, anthropometric measures and blood pressure in children with CP. Methods- This study included 55 ambulatory children with CP [mean (SD) age 11.3 (0.2) yr, range 6-17 yr; Gross Motor Function Classification System (GMFCS) levels I and II]. Anthropometric measures (BMI, waist circumference and waist-height ratio) and blood pressure were taken. Cardiorespiratory fitness was measured using a 10 m shuttle run test. Children were classified as low, middle and high fitness according to level achieved on the test using reference curves. Physical activity was measured by accelerometry over 7 days. In addition to total activity, time in sedentary behaviour and light, moderate, vigorous, and sustained moderate-to-vigorous activity (≥10 min bouts) were calculated. Results - Multiple regression analyses revealed that vigorous activity (β = 0.339, p<0.01), sustained moderate-to-vigorous activity (β = 0.250, p<0.05) and total activity (β = 0.238, p<0.05) were associated with level achieved on the shuttle run test after adjustment for age, sex and GMFCS level. Children with high fitness spent more time in vigorous activity than children with middle fitness (p<0.05). Shuttle run test level was negatively associated with BMI (r2 = -0.451, p<0.01), waist circumference (r2 = -0.560, p<0.001), waist-height ratio (r2 = -0.560, p<0.001) and systolic blood pressure (r2 = -0.306, p<0.05) after adjustment for age, sex and GMFCS level. Conclusions - Participation in physical activity, particularly at a vigorous intensity, is associated with high cardiorespiratory fitness in children with CP. Low cardiorespiratory fitness is associated with increased cardiometabolic risk
The role of expectations on consumer interpretation of new information
© 2017, © Emerald Publishing Limited. Purpose: The purpose of this paper is to investigate the role of consumers’ expectations and their antecedents on beliefs, attitude and behavioral intentions when they respond to new corporate social responsibility (CSR) information about a service firm. Design/methodology/approach: Empirically, the authors measure prior beliefs, and then calibrate how those beliefs change in response to a piece of news. The authors develop a conceptual model articulating the nature and antecedents of three types of expectations: would, could and should. The authors use structural equation modeling to test how these expectations influence the consumer evaluation process. Findings: The results show that the effect of could expectations on the evaluation process is felt via their influence on would expectations; that is, would expectations fully mediate the relationship between could expectations and attitude toward news. Similarly, attitude toward news fully mediates the relationship between would and should expectations and updated beliefs about the firm. Research limitations/implications: In the selected service industry, the findings show that expectations are mediated by the new information that consumers receive when they are updating their prior beliefs. The authors demonstrate the ability to understand the antecedents of expectations, which provides a vehicle by which the organization can influence the consumer evaluation process. Practical implications: In practice, managers can identify the antecedents of consumer expectations and thus influence the reference points against which those consumers will evaluate news about their product. Social implications: CSR has important implications for multiple stakeholders and the authors calibrate the determinants of how news about the organization’s performance on it may affect consumer decision processes. Originality/value: The paper introduces “could” expectations into the services literature, examines the antecedents of the different types of expectations, and studies how their effect is felt through the evaluation process
D-brane Charges in Gravitational Duals of 2+1 Dimensional Gauge Theories and Duality Cascades
We perform a systematic analysis of the D-brane charges associated with
string theory realizations of d=3 gauge theories, focusing on the examples of
the N=4 supersymmetric U(N)xU(N+M) Yang-Mills theory and the N=3 supersymmetric
U(N)xU(N+M) Yang-Mills-Chern-Simons theory. We use both the brane construction
of these theories and their dual string theory backgrounds in the supergravity
approximation. In the N=4 case we generalize the previously known gravitational
duals to arbitrary values of the gauge couplings, and present a precise mapping
between the gravity and field theory parameters. In the N=3 case, which (for
some values of N and M) flows to an N=6 supersymmetric Chern-Simons-matter
theory in the IR, we argue that the careful analysis of the charges leads to a
shift in the value of the B-field in the IR solution by 1/2, in units where its
periodicity is one, compared to previous claims. We also suggest that the N=3
theories may exhibit, for some values of N and M, duality cascades similar to
those of the Klebanov-Strassler theory.Comment: 47 pages, 9 figures; minor changes, references adde
Binary and Millisecond Pulsars at the New Millennium
We review the properties and applications of binary and millisecond pulsars.
Our knowledge of these exciting objects has greatly increased in recent years,
mainly due to successful surveys which have brought the known pulsar population
to over 1300. There are now 56 binary and millisecond pulsars in the Galactic
disk and a further 47 in globular clusters. This review is concerned primarily
with the results and spin-offs from these surveys which are of particular
interest to the relativity community.Comment: 59 pages, 26 figures, 5 tables. Accepted for publication in Living
Reviews in Relativity (http://www.livingreviews.org
The increase of the functional entropy of the human brain with age
We use entropy to characterize intrinsic ageing properties of the human brain. Analysis of fMRI data from a large dataset of individuals, using resting state BOLD signals, demonstrated that a functional entropy associated with brain activity increases with age. During an average lifespan, the entropy, which was calculated from a population of individuals, increased by approximately 0.1 bits, due to correlations in BOLD activity becoming more widely distributed. We attribute this to the number of excitatory neurons and the excitatory conductance decreasing with age. Incorporating these properties into a computational model leads to quantitatively similar results to the fMRI data. Our dataset involved males and females and we found significant differences between them. The entropy of males at birth was lower than that of females. However, the entropies of the two sexes increase at different rates, and intersect at approximately 50 years; after this age, males have a larger entropy
- …
