17 research outputs found

    Coastal vulnerability assessment based on video wave run-up observations at a mesotidal, steep-sloped beach

    Get PDF
    Coastal imagery obtained from a coastal video monitoring station installed at Faro Beach, S. Portugal, was combined with topographic data from 40 surveys to generate a total of 456 timestack images. The timestack images were processed in an open-access, freely available graphical user interface (GUI) software, developed to extract and process time series of the cross-shore position of the swash extrema. The generated dataset of 2% wave run-up exceedence values R 2 was used to form empirical formulas, using as input typical hydrodynamic and coastal morphological parameters, generating a best-fit case RMS error of 0.39 m. The R 2 prediction capacity was improved when the shore-normal wind speed component and/or the tidal elevation η tide were included in the parameterizations, further reducing the RMS errors to 0.364 m. Introducing the tidal level appeared to allow a more accurate representation of the increased wave energy dissipation during low tides, while the negative trend between R 2 and the shore-normal wind speed component is probably related to the wind effect on wave breaking. The ratio of the infragravity-to-incident frequency energy contributions to the total swash spectra was in general lower than the ones reported in the literature E infra/E inci > 0.8, since low-frequency contributions at the steep, reflective Faro Beach become more significant mainly during storm conditions. An additional parameterization for the total run-up elevation was derived considering only 222 measurements for which η total,2 exceeded 2 m above MSL and the best-fit case resulted in RMS error of 0.41 m. The equation was applied to predict overwash along Faro Beach for four extreme storm scenarios and the predicted overwash beach sections, corresponded to a percentage of the total length ranging from 36% to 75%.info:eu-repo/semantics/publishedVersio

    Numerical simulations of onshore transport of larvae and detritus to a steep pocket beach

    No full text
    Larvae of intertidal invertebrates need to cross the surf zone to settle in their adult habitat. Onshore transport of invertebrate larvae and detritus at a steep beach was simulated with a biophysical larval tracking model. Hydrodynamic model calculations were performed for 24 h after a 24 h spin-up stage with bathymetry and averaged wave data obtained during the summer of 2011 at Carmel River State Beach, California, and with and without onshore wind. The physical model output was then transferred to a Lagrangian larval tracking model using several types of particles representing larvae. A southward alongshore current controlled particle distribution in the middle and north of the domain. At the southern shore, negatively buoyant particles were trapped by eddies generated between the alongshore current and shore, while positively buoyant particles were carried onshore by wind-driven surface currents. The concentration of modeled detritus in the surf zone was positively correlated with that of negatively buoyant larvae. Additionally, the concentrations of detritus and competent larvae within the surf zone were negatively correlated with wave height, consistent with the observations of the accompanying field study. Some eddies contributed to forming high particle concentration patches by trapping them in the surf zone. More small eddies were generated closer to the shore with smaller waves, leading to high larval and detrital concentration in the surf zone. As waves increased in size, fewer and larger eddies formed, predominantly outside the surf zone, and consequently fewer larvae and detritus particles entered or stayed in the surf zone

    Resonant near-surface inertial oscillations in the northeastern Gulf of Mexico

    Get PDF
    The inertial frequency is nearly diurnal at 30°N latitude which transects the northeastern Gulf of Mexico (NeGoM). At this latitude, near-surface inertial oscillations can amplify due to resonance with diurnal wind forcing. Diurnal oscillations have also been attributed to diurnal tidal forcing in this region. Because tidal forcing, wind forcing, and inertial oscillations are nearly diurnal, a unique series of comparative analyses are required to determine their relative influence on surface circulation. By comparing surface currents obtained by HF radar to predictions of the inertial response to wind forcing and barotropic tidal currents, it is found that diurnal oscillations in the NeGoM were predominantly due to wind-forced inertial oscillations in June 2010. The analyses provide a unique spatiotemporal perspective of inertial oscillations in the NeGoM where there is evidence of propagation, frequency and phase shifts, and amplitude variability. Because inertial oscillations mix the ocean differently than the tides, these results provide insight into how inertial oscillations potentially mixed oil from the Deepwater Horizon spill in June 2010. Near-diurnal oscillations during the winter were found to be predominantly due to tidal forcing when wind-driven inertial oscillations were diminished due to a presumably deeper mixed layerEnvironmental Fluid Mechanic
    corecore