84 research outputs found

    Solving random boundary heat model using the finite difference method under mean square convergence

    Full text link
    "This is the peer reviewed version of the following article: Cortés, J. C., Romero, J. V., Roselló, M. D., Sohaly, MA. Solving random boundary heat model using the finite difference method under mean square convergence. Comp and Math Methods. 2019; 1:e1026. https://doi.org/10.1002/cmm4.1026 , which has been published in final form at https://doi.org/10.1002/cmm4.1026. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."[EN] This contribution is devoted to construct numerical approximations to the solution of the one-dimensional boundary value problem for the heat model with uncertainty in the diffusion coefficient. Approximations are constructed via random numerical schemes. This approach permits discussing the effect of the random diffusion coefficient, which is assumed a random variable. We establish results about the consistency and stability of the random difference scheme using mean square convergence. Finally, an illustrative example is presented.Spanish Ministerio de Economía y Competitividad. Grant Number: MTM2017-89664-PCortés, J.; Romero, J.; Roselló, M.; Sohaly, M. (2019). Solving random boundary heat model using the finite difference method under mean square convergence. Computational and Mathematical Methods. 1(3):1-15. https://doi.org/10.1002/cmm4.1026S11513Han, X., & Kloeden, P. E. (2017). Random Ordinary Differential Equations and Their Numerical Solution. Probability Theory and Stochastic Modelling. doi:10.1007/978-981-10-6265-0Villafuerte, L., Braumann, C. A., Cortés, J.-C., & Jódar, L. (2010). Random differential operational calculus: Theory and applications. Computers & Mathematics with Applications, 59(1), 115-125. doi:10.1016/j.camwa.2009.08.061Logan, J. D. (2004). Partial Differential Equations on Bounded Domains. Undergraduate Texts in Mathematics, 121-171. doi:10.1007/978-1-4419-8879-9_4Cannon, J. R. (1964). A Cauchy problem for the heat equation. Annali di Matematica Pura ed Applicata, 66(1), 155-165. doi:10.1007/bf02412441LinPPY.On The Numerical Solution of The Heat Equation in Unbounded Domains[PhD thesis].New York NY:New York University;1993.Li, J.-R., & Greengard, L. (2007). On the numerical solution of the heat equation I: Fast solvers in free space. Journal of Computational Physics, 226(2), 1891-1901. doi:10.1016/j.jcp.2007.06.021Han, H., & Huang, Z. (2002). Exact and approximating boundary conditions for the parabolic problems on unbounded domains. Computers & Mathematics with Applications, 44(5-6), 655-666. doi:10.1016/s0898-1221(02)00180-3Han, H., & Huang, Z. (2002). A class of artificial boundary conditions for heat equation in unbounded domains. Computers & Mathematics with Applications, 43(6-7), 889-900. doi:10.1016/s0898-1221(01)00329-7Strikwerda, J. C. (2004). Finite Difference Schemes and Partial Differential Equations, Second Edition. doi:10.1137/1.9780898717938Kloeden, P. E., & Platen, E. (1992). Numerical Solution of Stochastic Differential Equations. doi:10.1007/978-3-662-12616-5Øksendal, B. (2003). Stochastic Differential Equations. Universitext. doi:10.1007/978-3-642-14394-6Holden, H., Øksendal, B., Ubøe, J., & Zhang, T. (2010). Stochastic Partial Differential Equations. doi:10.1007/978-0-387-89488-1El-Tawil, M. A., & Sohaly, M. A. (2012). Mean square convergent three points finite difference scheme for random partial differential equations. Journal of the Egyptian Mathematical Society, 20(3), 188-204. doi:10.1016/j.joems.2012.08.017Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., Roselló, M.-D., & Sohaly, M. A. (2018). Solving the random Cauchy one-dimensional advection–diffusion equation: Numerical analysis and computing. Journal of Computational and Applied Mathematics, 330, 920-936. doi:10.1016/j.cam.2017.02.001Cortés, J. C., Jódar, L., Villafuerte, L., & Villanueva, R. J. (2007). Computing mean square approximations of random diffusion models with source term. Mathematics and Computers in Simulation, 76(1-3), 44-48. doi:10.1016/j.matcom.2007.01.020Cortés, J. C., Jódar, L., & Villafuerte, L. (2009). Random linear-quadratic mathematical models: Computing explicit solutions and applications. Mathematics and Computers in Simulation, 79(7), 2076-2090. doi:10.1016/j.matcom.2008.11.008Henderson, D., & Plaschko, P. (2006). Stochastic Differential Equations in Science and Engineering. doi:10.1142/580

    Heat generation and transfer in automotive dry clutch engagement

    Get PDF
    Dynamic behaviour of automotive dry clutches depends on the frictional characteristics of the contact between the friction lining material, the flywheel, and the pressure plate during the clutch engagement process. During engagement due to high interfacial slip and relatively high contact pressures, generated friction gives rise to contact heat, which affects the material behaviour and the associated frictional characteristics. In practice excess interfacial slipping and generated heat during torque transmission can result in wear of the lining, thermal distortion of the friction disc, and reduced useful life of the clutch. This paper provides measurement of friction lining characteristics for dry clutches for new and worn state under representative operating conditions pertaining to interfacial slipping during clutch engagement, applied contact pressures, and generated temperatures. An analytical thermal partitioning network model of the clutch assembly, incorporating the flywheel, friction lining, and the pressure plate is presented, based upon the principle of conservation of energy. The results of the analysis show a higher coefficient of friction for the new lining material which reduces the extent of interfacial slipping during clutch engagement, thus reducing the frictional power loss and generated interfacial heating. The generated heat is removed less efficiently from worn lining. This might be affected by different factors observed such as the reduced lining thickness and the reduction of density of the material but mainly because of poorer thermal conductivity due to the depletion of copper particles in its microstructure as the result of wear. The study integrates frictional characteristics, microstructural composition, mechanisms of heat generation, effect of lining wear, and heat transfer in a fundamental manner, an approach not hitherto reported in literature

    A finite element method model to simulate laser interstitial thermo therapy in anatomical inhomogeneous regions

    Get PDF
    BACKGROUND: Laser Interstitial ThermoTherapy (LITT) is a well established surgical method. The use of LITT is so far limited to homogeneous tissues, e.g. the liver. One of the reasons is the limited capability of existing treatment planning models to calculate accurately the damage zone. The treatment planning in inhomogeneous tissues, especially of regions near main vessels, poses still a challenge. In order to extend the application of LITT to a wider range of anatomical regions new simulation methods are needed. The model described with this article enables efficient simulation for predicting damaged tissue as a basis for a future laser-surgical planning system. Previously we described the dependency of the model on geometry. With the presented paper including two video files we focus on the methodological, physical and mathematical background of the model. METHODS: In contrast to previous simulation attempts, our model is based on finite element method (FEM). We propose the use of LITT, in sensitive areas such as the neck region to treat tumours in lymph node with dimensions of 0.5 cm – 2 cm in diameter near the carotid artery. Our model is based on calculations describing the light distribution using the diffusion approximation of the transport theory; the temperature rise using the bioheat equation, including the effect of microperfusion in tissue to determine the extent of thermal damage; and the dependency of thermal and optical properties on the temperature and the injury. Injury is estimated using a damage integral. To check our model we performed a first in vitro experiment on porcine muscle tissue. RESULTS: We performed the derivation of the geometry from 3D ultrasound data and show for this proposed geometry the energy distribution, the heat elevation, and the damage zone. Further on, we perform a comparison with the in-vitro experiment. The calculation shows an error of 5% in the x-axis parallel to the blood vessel. CONCLUSIONS: The FEM technique proposed can overcome limitations of other methods and enables an efficient simulation for predicting the damage zone induced using LITT. Our calculations show clearly that major vessels would not be damaged. The area/volume of the damaged zone calculated from both simulation and in-vitro experiment fits well and the deviation is small. One of the main reasons for the deviation is the lack of accurate values of the tissue optical properties. In further experiments this needs to be validated

    The Pioneer Anomaly

    Get PDF
    Radio-metric Doppler tracking data received from the Pioneer 10 and 11 spacecraft from heliocentric distances of 20-70 AU has consistently indicated the presence of a small, anomalous, blue-shifted frequency drift uniformly changing with a rate of ~6 x 10^{-9} Hz/s. Ultimately, the drift was interpreted as a constant sunward deceleration of each particular spacecraft at the level of a_P = (8.74 +/- 1.33) x 10^{-10} m/s^2. This apparent violation of the Newton's gravitational inverse-square law has become known as the Pioneer anomaly; the nature of this anomaly remains unexplained. In this review, we summarize the current knowledge of the physical properties of the anomaly and the conditions that led to its detection and characterization. We review various mechanisms proposed to explain the anomaly and discuss the current state of efforts to determine its nature. A comprehensive new investigation of the anomalous behavior of the two Pioneers has begun recently. The new efforts rely on the much-extended set of radio-metric Doppler data for both spacecraft in conjunction with the newly available complete record of their telemetry files and a large archive of original project documentation. As the new study is yet to report its findings, this review provides the necessary background for the new results to appear in the near future. In particular, we provide a significant amount of information on the design, operations and behavior of the two Pioneers during their entire missions, including descriptions of various data formats and techniques used for their navigation and radio-science data analysis. As most of this information was recovered relatively recently, it was not used in the previous studies of the Pioneer anomaly, but it is critical for the new investigation.Comment: 165 pages, 40 figures, 16 tables; accepted for publication in Living Reviews in Relativit

    Influence of Stefan blowing on nanofluid flow submerged in microorganisms with leading edge accretion or ablation

    Get PDF
    The unsteady forced convective boundary layer flow of viscous incompressible fluid containing both nanoparticles and gyrotactic microorganisms, from a flat surface with leading edge accretion (or ablation), is investigated theoretically. Utilizing appropriate similarity transformations for the velocity, temperature, nanoparticle volume fraction and motile microorganism density, the governing conservation equations are rendered into a system of coupled, nonlinear, similarity ordinary differential equations. These equations, subjected to imposed boundary conditions, are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order numerical method in the MAPLE symbolic software. Good agreement between our computations and previous solutions is achieved. The effect of selected parameters on flow velocity, temperature, nano-particle volume fraction (concentration) and motile microorganism density function is investigated. Furthermore, tabular solutions are included for skin friction, wall heat transfer rate, nano-particle mass transfer rate and microorganism transfer rate. Applications of the study arise in advanced micro-flow devices to assess nanoparticle toxicity

    Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion

    Get PDF
    BACKGROUND: Investigation of bioheat transfer problems requires the evaluation of temporal and spatial distributions of temperature. This class of problems has been traditionally addressed using the Pennes bioheat equation. Transport of heat by conduction, and by temperature-dependent, spatially heterogeneous blood perfusion is modeled here using a transport lattice approach. METHODS: We represent heat transport processes by using a lattice that represents the Pennes bioheat equation in perfused tissues, and diffusion in nonperfused regions. The three layer skin model has a nonperfused viable epidermis, and deeper regions of dermis and subcutaneous tissue with perfusion that is constant or temperature-dependent. Two cases are considered: (1) surface contact heating and (2) spatially distributed heating. The model is relevant to the prediction of the transient and steady state temperature rise for different methods of power deposition within the skin. Accumulated thermal damage is estimated by using an Arrhenius type rate equation at locations where viable tissue temperature exceeds 42°C. Prediction of spatial temperature distributions is also illustrated with a two-dimensional model of skin created from a histological image. RESULTS: The transport lattice approach was validated by comparison with an analytical solution for a slab with homogeneous thermal properties and spatially distributed uniform sink held at constant temperatures at the ends. For typical transcutaneous blood gas sensing conditions the estimated damage is small, even with prolonged skin contact to a 45°C surface. Spatial heterogeneity in skin thermal properties leads to a non-uniform temperature distribution during a 10 GHz electromagnetic field exposure. A realistic two-dimensional model of the skin shows that tissue heterogeneity does not lead to a significant local temperature increase when heated by a hot wire tip. CONCLUSIONS: The heat transport system model of the skin was solved by exploiting the mathematical analogy between local thermal models and local electrical (charge transport) models, thereby allowing robust, circuit simulation software to obtain solutions to Kirchhoff's laws for the system model. Transport lattices allow systematic introduction of realistic geometry and spatially heterogeneous heat transport mechanisms. Local representations for both simple, passive functions and more complex local models can be easily and intuitively included into the system model of a tissue
    corecore