98 research outputs found

    Fenfluramine hydrochloride for the treatment of seizures in Dravet syndrome: a randomised, double-blind, placebo-controlled trial

    Get PDF
    BACKGROUND: Dravet syndrome is a rare, treatment-resistant developmental epileptic encephalopathy characterised by multiple types of frequent, disabling seizures. Fenfluramine has been reported to have antiseizure activity in observational studies of photosensitive epilepsy and Dravet syndrome. The aim of the present study was to assess the efficacy and safety of fenfluramine in patients with Dravet syndrome. METHODS: In this randomised, double-blind, placebo-controlled clinical trial, we enrolled children and young adults with Dravet syndrome. After a 6-week observation period to establish baseline monthly convulsive seizure frequency (MCSF; convulsive seizures were defined as hemiclonic, tonic, clonic, tonic-atonic, generalised tonic-clonic, and focal with clearly observable motor signs), patients were randomly assigned through an interactive web response system in a 1:1:1 ratio to placebo, fenfluramine 0·2 mg/kg per day, or fenfluramine 0·7 mg/kg per day, added to existing antiepileptic agents for 14 weeks. The primary outcome was the change in mean monthly frequency of convulsive seizures during the treatment period compared with baseline in the 0·7 mg/kg per day group versus placebo; 0·2 mg/kg per day versus placebo was assessed as a key secondary outcome. Analysis was by modified intention to treat. Safety analyses included all participants who received at least one dose of study medication. This trial is registered with ClinicalTrials.gov with two identical protocols NCT02682927 and NCT02826863. FINDINGS: Between Jan 15, 2016, and Aug 14, 2017, we assessed 173 patients, of whom 119 patients (mean age 9·0 years, 64 [54%] male) were randomly assigned to receive either fenfluramine 0·2 mg/kg per day (39), fenfluramine 0·7 mg/kg per day (40) or placebo (40). During treatment, the median reduction in seizure frequency was 74·9% in the fenfluramine 0·7 mg/kg group (from median 20·7 seizures per 28 days to 4·7 seizures per 28 days), 42·3% in the fenfluramine 0·2 mg/kg group (from median 17·5 seizures per 28 days to 12·6 per 28 days), and 19·2% in the placebo group (from median 27·3 per 28 days to 22·0 per 28 days). The study met its primary efficacy endpoint, with fenfluramine 0·7 mg/kg per day showing a 62·3% greater reduction in mean MCSF compared with placebo (95% CI 47·7-72·8, p<0·0001); fenfluramine 0·2 mg/kg per day showed a 32·4% reduction in mean MCSF compared with placebo (95% CI 6·2-52·3, p=0·0209). The most common adverse events (occurring in at least 10% of patients and more frequently in the fenfluramine groups) were decreased appetite, diarrhoea, fatigue, lethargy, somnolence, and decreased weight. Echocardiographic examinations revealed valve function within the normal physiological range in all patients during the trial and no signs of pulmonary arterial hypertension. INTERPRETATION: In Dravet syndrome, fenfluramine provided significantly greater reduction in convulsive seizure frequency compared with placebo and was generally well tolerated, with no observed valvular heart disease or pulmonary arterial hypertension. Fenfluramine could be an important new treatment option for patients with Dravet syndrome. FUNDING: Zogenix

    RNA polymerase II stalling promotes nucleosome occlusion and pTEFb recruitment to drive immortalization by Epstein-Barr virus

    Get PDF
    Epstein-Barr virus (EBV) immortalizes resting B-cells and is a key etiologic agent in the development of numerous cancers. The essential EBV-encoded protein EBNA 2 activates the viral C promoter (Cp) producing a message of ~120 kb that is differentially spliced to encode all EBNAs required for immortalization. We have previously shown that EBNA 2-activated transcription is dependent on the activity of the RNA polymerase II (pol II) C-terminal domain (CTD) kinase pTEFb (CDK9/cyclin T1). We now demonstrate that Cp, in contrast to two shorter EBNA 2-activated viral genes (LMP 1 and 2A), displays high levels of promoter-proximally stalled pol II despite being constitutively active. Consistent with pol II stalling, we detect considerable pausing complex (NELF/DSIF) association with Cp. Significantly, we observe substantial Cp-specific pTEFb recruitment that stimulates high-level pol II CTD serine 2 phosphorylation at distal regions (up to +75 kb), promoting elongation. We reveal that Cp-specific pol II accumulation is directed by DNA sequences unfavourable for nucleosome assembly that increase TBP access and pol II recruitment. Stalled pol II then maintains Cp nucleosome depletion. Our data indicate that pTEFb is recruited to Cp by the bromodomain protein Brd4, with polymerase stalling facilitating stable association of pTEFb. The Brd4 inhibitor JQ1 and the pTEFb inhibitors DRB and Flavopiridol significantly reduce Cp, but not LMP1 transcript production indicating that Brd4 and pTEFb are required for Cp transcription. Taken together our data indicate that pol II stalling at Cp promotes transcription of essential immortalizing genes during EBV infection by (i) preventing promoter-proximal nucleosome assembly and ii) necessitating the recruitment of pTEFb thereby maintaining serine 2 CTD phosphorylation at distal regions

    The chemical interactome space between the human host and the genetically defined gut metabotypes

    Get PDF
    The bacteria that colonize the gastrointestinal tracts of mammals represent a highly selected microbiome that has a profound influence on human physiology by shaping the host's metabolic and immune system activity. Despite the recent advances on the biological principles that underlie microbial symbiosis in the gut of mammals, mechanistic understanding of the contributions of the gut microbiome and how variations in the metabotypes are linked to the host health are obscure. Here, we mapped the entire metabolic potential of the gut microbiome based solely on metagenomics sequencing data derived from fecal samples of 124 Europeans (healthy, obese and with inflammatory bowel disease). Interestingly, three distinct clusters of individuals with high, medium and low metabolic potential were observed. By illustrating these results in the context of bacterial population, we concluded that the abundance of the Prevotella genera is a key factor indicating a low metabolic potential. These metagenome-based metabolic signatures were used to study the interaction networks between bacteria-specific metabolites and human proteins. We found that thirty-three such metabolites interact with disease-relevant protein complexes several of which are highly expressed in cells and tissues involved in the signaling and shaping of the adaptive immune system and associated with squamous cell carcinoma and bladder cancer. From this set of metabolites, eighteen are present in DrugBank providing evidence that we carry a natural pharmacy in our guts. Furthermore, we established connections between the systemic effects of non-antibiotic drugs and the gut microbiome of relevance to drug side effects and health-care solutions.link_to_subscribed_fulltex

    The Effects of Acute Tryptophan Depletion on Reactive Aggression in Adults with Attention-Deficit/Hyperactivity Disorder (ADHD) and Healthy Controls

    Get PDF
    Background: The neurotransmitter serotonin (5-HT) has been linked to the underlying neurobiology of aggressive behavior, particularly with evidence from studies in animals and humans. However, the underlying neurobiology of aggression remains unclear in the context of attention-deficit/hyperactivity disorder (ADHD), a disorder known to be associated with aggression and impulsivity. We investigated the effects of acute tryptophan depletion (ATD), and the resulting diminished central nervous serotonergic neurotransmission, on reactive aggression in healthy controls and adults with ADHD. Methodology/Principal Findings: Twenty male patients with ADHD and twenty healthy male controls were subjected to ATD with an amino acid (AA) beverage that lacked tryptophan (TRP, the physiological precursor of 5-HT) and a TRPbalanced AA beverage (BAL) in a double-blind, within-subject crossover-study over two study days. We assessed reactive aggression 3.25 hours after ATD/BAL intake using a point-subtraction aggression game (PSAG) in which participants played for points against a fictitious opponent. Point subtraction was taken as a measure for reactive aggression. Lowered rates of reactive aggression were found in the ADHD group under ATD after low provocation (LP), with controls showing the opposite effect. In patients with ADHD, trait-impulsivity was negatively correlated with the ATD effect on reactive aggression after LP. Statistical power was limited due to large standard deviations observed in the data on point subtraction, which may limit the use of this particular paradigm in adults with ADHD

    Osteoarthritis and functional disability: results of a cross sectional study among primary care patients in Germany

    Get PDF
    Contains fulltext : 52359.pdf ( ) (Open Access)BACKGROUND: The aim of the study was to determine factors associated with functional disability in patients with OA. METHODS: 1250 questionnaires were distributed to OA outpatients from 75 general practices; 1021 (81.6%) were returned. Questionnaires included sociodemographic data, the short form of the Arthritis Impact Measurement Scale (AIMS2-SF), and the Patient Health Questionnaire (PHQ-9) to assess concomitant depression. A hierarchical stepwise multiple regression analysis with the AIMS2-SF dimension "lower body" as dependent was performed. RESULTS: Main factors associated with functional disability were depression symptoms, as reflected in a high score of the PHQ-9 (beta = 0.446; p < 0.0009), pain as reflected in the AIMS2-SF symptom scale (beta = 0.412; p = 0.001), and few social contacts (beta = 0.201; p < 0.042). A high body mass index was associated with lower functional ability (beta = 0.332; p = 0.005) whereas a higher educational level (beta = -0.279; p = 0.029) predicted less impairment. Increased age was a weak predictor (beta = 0.178; p = 0.001) of disability. With a p of 0.062 the radiological severity according to the grading of Kellgren and Lawrence slightly surpassed the required significance level for remaining in the final regression model. CONCLUSION: The results emphasize that psychological as well as physical factors need to be addressed similarly to improve functional ability of patients suffering from OA. More research with multifaceted and tailored interventions is needed to determine how these factors can be targeted appropriately

    Phospholipase D signaling: orchestration by PIP2 and small GTPases

    Get PDF
    Hydrolysis of phosphatidylcholine by phospholipase D (PLD) leads to the generation of the versatile lipid second messenger, phosphatidic acid (PA), which is involved in fundamental cellular processes, including membrane trafficking, actin cytoskeleton remodeling, cell proliferation and cell survival. PLD activity can be dramatically stimulated by a large number of cell surface receptors and is elaborately regulated by intracellular factors, including protein kinase C isoforms, small GTPases of the ARF, Rho and Ras families and, particularly, by the phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP2). PIP2 is well known as substrate for the generation of second messengers by phospholipase C, but is now also understood to recruit and/or activate a variety of actin regulatory proteins, ion channels and other signaling proteins, including PLD, by direct interaction. The synthesis of PIP2 by phosphoinositide 5-kinase (PIP5K) isoforms is tightly regulated by small GTPases and, interestingly, by PA as well, and the concerted formation of PIP2 and PA has been shown to mediate receptor-regulated cellular events. This review highlights the regulation of PLD by membrane receptors, and describes how the close encounter of PLD and PIP5K isoforms with small GTPases permits the execution of specific cellular functions

    Interplay between phosphorylation and palmitoylation mediates plasma membrane targeting and sorting of GAP43.

    Get PDF
    Phosphorylation and lipidation provide posttranslational mechanisms that contribute to the distribution of cytosolic proteins in growing nerve cells. The growth-associated protein GAP43 is susceptible to both phosphorylation and S-palmitoylation and is enriched in the tips of extending neurites. However, how phosphorylation and lipidation interplay to mediate sorting of GAP43 is unclear. Using a combination of biochemical, genetic, and imaging approaches, we show that palmitoylation is required for membrane association and that phosphorylation at Ser-41 directs palmitoylated GAP43 to the plasma membrane. Plasma membrane association decreased the diffusion constant fourfold in neuritic shafts. Sorting to the neuritic tip required palmitoylation and active transport and was increased by phosphorylation-mediated plasma membrane interaction. Vesicle tracking revealed transient association of a fraction of GAP43 with exocytic vesicles and motion at a fast axonal transport rate. Simulations confirmed that a combination of diffusion, dynamic plasma membrane interaction and active transport of a small fraction of GAP43 suffices for efficient sorting to growth cones. Our data demonstrate a complex interplay between phosphorylation and lipidation in mediating the localization of GAP43 in neuronal cells. Palmitoylation tags GAP43 for global sorting by piggybacking on exocytic vesicles, whereas phosphorylation locally regulates protein mobility and plasma membrane targeting of palmitoylated GAP43

    How the serotonin transporter 5-HTTLPR polymorphism influences amygdala function: the roles of in vivo serotonin transporter expression and amygdala structure

    Get PDF
    The serotonin transporter-linked promoter region (5-HTTLPR) polymorphism of the serotonin transporter gene is associated with amygdala response during negative emotion. The aim of this study was to investigate whether this genotype effect on amygdala function is mediated by current serotonin transporter (5-HTT) levels or rather by genetically induced influences during neurodevelopment, shaping brain structure. A total of 54 healthy subjects underwent functional and structural magnetic resonance imaging, [11C]DASB positron emission tomography and 5-HTTLPR genotyping to analyze the interrelationships between amygdala activation during processing of unpleasant stimuli, 5-HTTLPR genotype, amygdala volumes and 5-HTT levels in the midbrain and in other brain regions. In line with previous research, carriers of the short allele (S) showed increased amygdala activation. Path analysis demonstrated that this genotype effect was not procured by current 5-HTT availability but by amygdala structure, with smaller amygdala volumes in the S than in the LL genotype, as well as smaller volumes being associated with increased amygdala activation. Our findings stress the role of genetic effects during neurodevelopment

    Bypassing cellular EGF receptor dependence through epithelial-to-mesenchymal-like transitions

    Get PDF
    Over 90% of all cancers are carcinomas, malignancies derived from cells of epithelial origin. As carcinomas progress, these tumors may lose epithelial morphology and acquire mesenchymal characteristics which contribute to metastatic potential. An epithelial-to-mesenchymal transition (EMT) similar to the process critical for embryonic development is thought to be an important mechanism for promoting cancer invasion and metastasis. Epithelial-to-mesenchymal transitions have been induced in vitro by transient or unregulated activation of receptor tyrosine kinase signaling pathways, oncogene signaling and disruption of homotypic cell adhesion. These cellular models attempt to mimic the complexity of human carcinomas which respond to autocrine and paracrine signals from both the tumor and its microenvironment. Activation of the epidermal growth factor receptor (EGFR) has been implicated in the neoplastic transformation of solid tumors and overexpression of EGFR has been shown to correlate with poor survival. Notably, epithelial tumor cells have been shown to be significantly more sensitive to EGFR inhibitors than tumor cells which have undergone an EMT-like transition and acquired mesenchymal characteristics, including non-small cell lung (NSCLC), head and neck (HN), bladder, colorectal, pancreas and breast carcinomas. EGFR blockade has also been shown to inhibit cellular migration, suggesting a role for EGFR inhibitors in the control of metastasis. The interaction between EGFR and the multiple signaling nodes which regulate EMT suggest that the combination of an EGFR inhibitor and other molecular targeted agents may offer a novel approach to controlling metastasis
    corecore