9 research outputs found
Physiological and Biomechanical Responses of Highly Trained Distance Runners to Lower-Body Positive Pressure Treadmill Running
Background: As a way to train at faster running speeds, add training volume, prevent injury, or rehabilitate after an injury, lower-body positive pressure treadmills (LBPPT) have become increasingly commonplace among athletes. However, there are conflicting evidence and a paucity of data describing the physiological and biomechanical responses to LBPPT running in highly trained or elite caliber runners at the running speeds they habitually train at, which are considerably faster than those of recreational runners. Furthermore, data is lacking regarding female runners’ responses to LBPPT running. Therefore, this study was designed to evaluate the physiological and biomechanical responses to LBPPT running in highly trained male and female distance runners.
Methods: Fifteen highly trained distance runners (seven male; eight female) completed a single running test composed of 4 × 9-min interval series at fixed percentages of body weight ranging from 0 to 30% body weight support (BWS) in 10% increments on LBPPT. The first interval was always conducted at 0% BWS; thereafter, intervals at 10, 20, and 30% BWS were conducted in random order. Each interval consisted of three stages of 3 min each, at velocities of 14.5, 16.1, and 17.7 km·h−1 for men and 12.9, 14.5, and 16.1 km·h−1 for women. Expired gases, ventilation, breathing frequency, heart rate (HR), rating of perceived exertion (RPE), and stride characteristics were measured during each running speed and BWS.
Results: Male and female runners had similar physiological and biomechanical responses to running on LBPPT. Increasing BWS increased stride length (p \u3c 0.02) and flight duration (p \u3c 0.01) and decreased stride rate (p \u3c 0.01) and contact time (p \u3c 0.01) in small-large magnitudes. There was a large attenuation of oxygen consumption (VO2) relative to BWS (p \u3c 0.001), while there were trivial-moderate reductions in respiratory exchange ratio, minute ventilation, and respiratory frequency (p \u3e 0.05), and small-large effects on HR and RPE (p \u3c 0.01). There were trivial-small differences in VE, respiratory frequency, HR, and RPE for a given VO2 across various BWS (p \u3e 0.05).
Conclusions: The results indicate the male and female distance runners have similar physiological and biomechanical responses to LBPPT running. Overall, the biomechanical changes during LBPPT running all contributed to less metabolic cost and corresponding physiological changes. Keywords: AlterG, Lower-body positive pressure, Body weight support, Anti-gravity, Running, Stride characteristics, Physiological characteristics, Metabolic demand, Oxygen demand, Oxygen cos
Corrida em piscina funda: limites e possibilidades para o alto desempenho Velocidad en piscina de profundidad: lÃmites y posibilidades para un alto desempeño Deep water running: limits and possibilities for high performance
O objetivo deste estudo foi analisar os limites e possibilidades da utilização da corrida em piscina funda no treinamento de corredores de rendimento. Além disso, são discutidas as respostas agudas submáximas, máximas e crônicas, do ponto de vista fisiológico e biomecânico entre a corrida em terra e em piscina funda. As respostas máximas de freqüência cardÃaca e consumo de oxigênio são menores no exercÃcio aquático do que na corrida terrestre. Dados experimentais sugerem o uso do treinamento de corrida em piscina funda para corredores de rendimento; contudo, essas evidências são limitadas para treinamentos de até 10 semanas.<br>El objetivo de este estudio ha sido el de analizar los lÃmites y posibilidades de la utilización de carreras de velocidad en piscina de profundidad durante el entrenamiento de velocista de rendimiento. Además de esto, son discutidas las respuestas agudas submáximas, máximas y crónicas, bajo el punto de vista fisiológico y biomecánico entre la carrera en tierra y en piscina profunda. Las respuestas máximas de frecuencia cardÃaca y consumo de oxÃgeno son menores en el ejercicio acuático que en la de tierra. Datos experimentales sugieren el uso de entrenamiento de carrera en piscina profunda para velocistas de rendimiento, sin embargo estas evidencias son limitadas a entrenamientos de hasta 10 semanas.<br>The purpose of this study was to analyze the limits and possibilities of deep water running on training of performance runners. Besides, it has been discussed the submaximal acute, maximal acute and chronical responses, following physiological and biomechanical aspects between running on land and deep water running. Heart rate and oxygen uptake's maximal responses are lower in aquatic exercise than in running on land. Experimental evidences suggest the deep water running training for performance athletes, but these studies are limited in training program until ten weeks