61 research outputs found
Stellar Coronal and Wind Models: Impact on Exoplanets
Surface magnetism is believed to be the main driver of coronal heating and
stellar wind acceleration. Coronae are believed to be formed by plasma confined
in closed magnetic coronal loops of the stars, with winds mainly originating in
open magnetic field line regions. In this Chapter, we review some basic
properties of stellar coronae and winds and present some existing models. In
the last part of this Chapter, we discuss the effects of coronal winds on
exoplanets.Comment: Chapter published in the "Handbook of Exoplanets", Editors in Chief:
Juan Antonio Belmonte and Hans Deeg, Section Editor: Nuccio Lanza. Springer
Reference Work
Dusty Planetary Systems
Extensive photometric stellar surveys show that many main sequence stars show
emission at infrared and longer wavelengths that is in excess of the stellar
photosphere; this emission is thought to arise from circumstellar dust. The
presence of dust disks is confirmed by spatially resolved imaging at infrared
to millimeter wavelengths (tracing the dust thermal emission), and at optical
to near infrared wavelengths (tracing the dust scattered light). Because the
expected lifetime of these dust particles is much shorter than the age of the
stars (>10 Myr), it is inferred that this solid material not primordial, i.e.
the remaining from the placental cloud of gas and dust where the star was born,
but instead is replenished by dust-producing planetesimals. These planetesimals
are analogous to the asteroids, comets and Kuiper Belt objects (KBOs) in our
Solar system that produce the interplanetary dust that gives rise to the
zodiacal light (tracing the inner component of the Solar system debris disk).
The presence of these "debris disks" around stars with a wide range of masses,
luminosities, and metallicities, with and without binary companions, is
evidence that planetesimal formation is a robust process that can take place
under a wide range of conditions. This chapter is divided in two parts. Part I
discusses how the study of the Solar system debris disk and the study of debris
disks around other stars can help us learn about the formation, evolution and
diversity of planetary systems by shedding light on the frequency and timing of
planetesimal formation, the location and physical properties of the
planetesimals, the presence of long-period planets, and the dynamical and
collisional evolution of the system. Part II reviews the physical processes
that affect dust particles in the gas-free environment of a debris disk and
their effect on the dust particle size and spatial distribution.Comment: 68 pages, 25 figures. To be published in "Solar and Planetary
Systems" (P. Kalas and L. French, Eds.), Volume 3 of the series "Planets,
Stars and Stellar Systems" (T.D. Oswalt, Editor-in-chief), Springer 201
Disk Detective: Discovery of new circumstellar disk candidates through citizen science
The Disk Detective citizen science project aims to find new stars with 22 μm excess emission from circumstellar dust using data from NASA's Wide-field Infrared Survey Explorer (WISE) mission. Initial cuts on the AllWISE catalog provide an input catalog of 277,686 sources. Volunteers then view images of each source online in 10 different bands to identify false positives (galaxies, interstellar matter, image artifacts, etc.). Sources that survive this online vetting are followed up with spectroscopy on the FLWO Tillinghast telescope. This approach should allow us to unleash the full potential of WISE for finding new debris disks and protoplanetary disks. We announce a first list of 37 new disk candidates discovered by the project, and we describe our vetting and follow-up process. One of these systems appears to contain the first debris disk discovered around a star with a white dwarf companion: HD 74389. We also report four newly discovered classical Be stars (HD 6612, HD 7406, HD 164137, and HD 218546) and a new detection of 22 μm excess around the previously known debris disk host star HD 22128
Serum Early Prostate Cancer Antigen (EPCA) Level and Its Association with Disease Progression in Prostate Cancer in a Chinese Population
BACKGROUND: Early prostate cancer antigen (EPCA) has been shown a prostate cancer (PCa)-associated nuclear matrix protein, however, its serum status and prognostic power in PCa are unknown. The goals of this study are to measure serum EPCA levels in a cohort of patients with PCa prior to the treatment, and to evaluate the clinical value of serum EPCA. METHODS: Pretreatment serum EPCA levels were determined with an ELISA in 77 patients with clinically localized PCa who underwent radical prostatectomy and 51 patients with locally advanced or metastatic disease who received primary androgen deprivation therapy, and were correlated with clinicopathological variables and disease progression. Serum EPCA levels were also examined in 40 healthy controls. RESULTS: Pretreatment mean serum EPCA levels were significantly higher in PCa patients than in controls (16.84 ± 7.60 ng/ml vs. 4.12 ± 2.05 ng/ml, P<0.001). Patients with locally advanced and metastatic PCa had significantly higher serum EPCA level than those with clinically localized PCa (22.93 ± 5.28 ng/ml and 29.41 ± 8.47 ng/ml vs. 15.17 ± 6.03 ng/ml, P = 0.014 and P<0.001, respectively). Significantly elevated EPCA level was also found in metastatic PCa compared with locally advanced disease (P < 0.001). Increased serum EPCA levels were significantly and positively correlated with Gleason score and clinical stage, but not with PSA levels and age. On multivariate analysis, pretreatment serum EPCA level held the most significantly predictive value for the biochemical recurrence and androgen-independent progression among pretreatment variables (HR = 4.860, P<0.001 and HR = 5.418, P<0.001, respectively). CONCLUSIONS: Serum EPCA level is markedly elevated in PCa. Pretreatment serum EPCA level correlates significantly with the poor prognosis, showing prediction potential for PCa progression
Dust production and depletion in evolved planetary systems
The infrared dust emission from the white dwarf GD 56 is found to rise and fall by 20 per cent peak-to-peak over 11.2 yr, and is consistent with ongoing dust production and depletion. It is hypothesized that the dust is produced via collisions associated with an evolving dust disc, temporarily increasing the emitting surface of warm debris, and is subsequently destroyed or assimilated within a few years. The variations are consistent with debris that does not change temperature, indicating that dust is produced and depleted within a fixed range of orbital radii. Gas produced in collisions may rapidly re-condense onto grains, or may accrete onto the white dwarf surface on viscous timescales that are considerably longer than Poynting–Robertson drag for micron-sized dust. This potential delay in mass accretion rate change is consistent with multi-epoch spectra of the unchanging Ca II and Mg II absorption features in GD 56 over 15 yr, although the sampling is sparse. Overall, these results indicate that collisions are likely to be the source of dust and gas, either inferred or observed, orbiting most or all polluted white dwarfs
Targeting the IL-6 Dependent Phenotype Can Identify Novel Therapies for Cholangiocarcinoma
The need for new therapies for cholangiocarcinoma is highlighted by their poor prognosis and refractoriness to chemotherapy. Increased production of Interleukin-6 promotes cholangiocarcinoma growth and contributes to chemoresistance by activating cell survival mechanisms. We sought to identify biologically active compounds capable of ameliorating the phenotypic effects of IL-6 expression and to explore their potential therapeutic use for cholangiocarcinoma.A genomic signature associated with Interleukin-6 expression in Mz-ChA-1 human malignant cholangiocytes was derived. Computational bioinformatics analysis was performed to identify compounds that induced inverse gene changes to the signature. The effect of these compounds on cholangiocarcinoma growth was then experimentally verified in vitro and in vivo. Interactions with other therapeutic agents were evaluated using median effects analysis.A group of structurally related compounds, nitrendipine, nifedipine and felodipine was identified. All three compounds were cytotoxic to Mz-ChA-1 cells with an IC50 for felodipine of 26 µM, nitrendipine, 44 µM and nifedipine, 15 µM. Similar results were observed in KMCH-1, CC-LP-1 and TFK-1 cholangiocarcinoma cell lines. At a fractional effect of 0.5, all three agents were synergistic with either camptothecin or gemcitabine in Mz-ChA-1 cells in vitro. Co-administration of felodipine and gemcitabine decreased the growth of Mz-ChA-1 cell xenografts in nude athymic mice.Computational bioinformatics analysis of phenotype-based genomic expression can be used to identify therapeutic agents. Using this drug discovery approach based on targeting a defined tumor associated phenotype, we identified compounds with the potential for therapeutic use in cholangiocarcinoma
First Scattered-light Images of the Gas-rich Debris Disk around 49 Ceti
We present the first scattered-light images of the debris disk around 49 Ceti, a ∼40 Myr A1 main-sequence star at 59 pc, famous for hosting two massive dust belts as well as large quantities of atomic and molecular gas. The outer disk is revealed in reprocessed archival Hubble Space Telescope NICMOS-F110W images, as well as new coronagraphic H-band images from the Very Large Telescope SPHERE instrument. The disk extends from 1.″1 (65 au) to 4.″6 (250 au) and is seen at an inclination of 73°, which refines previous measurements at lower angular resolution. We also report no companion detection larger than 3 M Jup at projected separations beyond 20 au from the star (0.″34). Comparison between the F110W and H-band images is consistent with a gray color of 49 Ceti's dust, indicating grains larger than 2 μm. Our photometric measurements indicate a scattering efficiency/infrared excess ratio of 0.2-0.4, relatively low compared to other characterized debris disks. We find that 49 Ceti presents morphological and scattering properties very similar to the gas-rich HD 131835 system. From our constraint on the disk inclination we find that the atomic gas previously detected in absorption must extend to the inner disk, and that the latter must be depleted of CO gas. Building on previous studies, we propose a schematic view of the system describing the dust and gas structure around 49 Ceti and hypothetical scenarios for the gas nature and origin.E.C. acknowledges support from NASA through Hubble Fellowship grant HST-HF2-51355 awarded by STScI, operated by AURA, Inc. under contract NAS5-26555, and support from HST-AR-12652, for research carried out at the Jet Propulsion Laboratory, California Institute of Technology. J.M. acknowledges ESO through the ESO fellowship program. M.B. acknowledges support from DFG project Kr 2164/15-1. G.M.K. is supported by the Royal Society as a Royal Society University Research Fellow. C.d.B. is supported by Mexican CONACyT research grant CB-2012-183007. L.M. acknowledges support by STFC through a graduate studentship. J.C.A. acknowledges support by the Programme National de Planétologie. We acknowledge support by the European Union through ERC grant 337569 for O.A. and C.A.G.G. and grant 279973 for M.W. and L.M
- …
