82 research outputs found
Effects of a contoured articular prosthetic device on tibiofemoral peak contact pressure: a biomechanical study
Many middle-aged patients are affected by localized cartilage defects that are neither appropriate for primary, nor repeat biological repair methods, nor for conventional arthroplasty. This in vitro study aims to determine the peak contact pressure in the tibiofemoral joint with a partial femoral resurfacing device (HemiCAP®, Arthrosurface Inc., Franklin, MA, USA). Peak contact pressure was determined in eight fresh-frozen cadaveric specimens using a Tekscan sensor placed in the medial compartment above the menisci. A closed loop robotic knee simulator was used to test each knee in static stance positions (5°/15°/30°/45°) with body weight ground reaction force (GRF), 30° flexion with twice the body weight (2tBW) GRF and dynamic knee-bending cycles with body weight GRF. The ground reaction force was adjusted to the living body weight of the cadaver donor and maintained throughout all cycles. Each specimen was tested under four different conditions: Untreated, flush HemiCAP® implantation, 1-mm proud implantation and 20-mm defect. A paired sampled t test to compare means (significance, P ≤ 0.05) was used for statistical analysis. On average, no statistically significant differences were found in any testing condition comparing the normal knee with flush device implantation. With the 1-mm proud implant, statistically significant increase of peak contact pressures of 217% (5° stance), 99% (dynamic knee bending) and 90% (30° stance with 2tBW) compared to the untreated condition was seen. No significant increase of peak contact pressure was evaluated with the 20-mm defect. The data suggests that resurfacing with the HemiCAP® does not lead to increased peak contact pressure with flush implantation. However, elevated implantation results in increased peak contact pressure and might be biomechanically disadvantageous in an in vivo application
Osteochondral Grafting: Effect of Graft Alignment, Material Properties, and Articular Geometry
Osteochondral grafting for cartilage lesions is an attractive surgical procedure; however, the clinical results have not always been successful. Surgical recommendations differ with respect to donor site and graft placement technique. No clear biomechanical analysis of these surgical options has been reported. We hypothesized that differences in graft placement, graft biomechanical properties, and graft topography affect cartilage stresses and strains. A finite element model of articular cartilage and meniscus in a normal knee was constructed. The model was used to analyze the magnitude and the distribution of contact stresses, von Mises stresses, and compressive strains in the intact knee, after creation of an 8-mm diameter osteochondral defect, and after osteochondral grafting of the defect. The effects of graft placement, articular surface topography, and biomechanical properties were evaluated. The osteochondral defect generated minimal changes in peak contact stress (3.6 MPa) relative to the intact condition (3.4 MPa) but significantly increased peak von Mises stress (by 110%) and peak compressive strain (by 63%). A perfectly matched graft restored stresses and strains to near intact conditions. Leaving the graft proud by 0.5 mm generated the greatest increase in local stresses (peak contact stresses = 6.7 MPa). Reducing graft stiffness and curvature of articular surface had lesser effects on local stresses. Graft alignment, graft biomechanical properties, and graft topography all affected cartilage stresses and strains. Contact stresses, von Mises stresses, and compressive strains are biomechanical markers for potential tissue damage and cell death. Leaving the graft proud tends to jeopardize the graft by increasing the stresses and strains on the graft. From a biomechanical perspective, the ideal surgical procedure is a perfectly aligned graft with reasonably matched articular cartilage surface from a lower load-bearing region of the knee
Microfracture is more cost-effective than autologous chondrocyte implantation: a review of level 1 and level 2 studies with 5 year follow-up
Biomechanical considerations in the pathogenesis of osteoarthritis of the knee
Osteoarthritis is the most common joint disease and a major cause of disability. The knee is the large joint most affected. While chronological age is the single most important risk factor of osteoarthritis, the pathogenesis of knee osteoarthritis in the young patient is predominantly related to an unfavorable biomechanical environment at the joint. This results in mechanical demand that exceeds the ability of a joint to repair and maintain itself, predisposing the articular cartilage to premature degeneration. This review examines the available basic science, preclinical and clinical evidence regarding several such unfavorable biomechanical conditions about the knee: malalignment, loss of meniscal tissue, cartilage defects and joint instability or laxity
Pesticide take-home pathway among children of agricultural workers: Study design, methods, and baseline findings
Farmworkers are exposed to pesticides and may take home pesticide residues to their families. In this paper, self-reported pesticide exposure and home practices to reduce the amount of pesticide residues taken home were examined among 571 farmworkers. Dine samples from a subsample of farmworkers and children and dust samples from households and vehicles also assessed pesticide exposure. Overall, 96% of respondents reported exposure to pesticides at work. Many employers did not provide resources for hand washing. Farmworkers' protective practices to keep pesticide residues out of the home were at a low level. In a subset of respondents, pesticide levels above the limit of quantitation were seen in the urine of children and adults and in house and vehicle dust. The results support the take-home pathway of pesticide exposure. Ways must be found to reduce this pesticide exposure among children of farmworkers.NIEHS NIH HHSNATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCE
Effects of plant culture method, plant age, zoospore concentration and temperature on zoospore encystment of Phytophthora
- …
