2,767 research outputs found
Best practice of nurse managers in risk management
OBJECTIVE: to identify the actions, undertaken by nurse managers in a risk management program, considered as best practice. METHOD: a case study undertaken in a private hospital in the south of Brazil. A risk manager and nurse managers working in a risk management program participated in this study. The data was collected between May and September 2011 through analysis of documents, semi-structured interviews and non-participant observation. Based on the triangulation, the data was analyzed through practical measures. RESULTS: educational actions, the critical analysis of the context, and the multiple dimensions of the management were evidenced as best practice. CONCLUSIONS: the broadening of understanding regarding risk management best practice offers further support for nurse managers to achieve excellence in their actions and thus provide safe and quality care
Integration of decision support systems to improve decision support performance
Decision support system (DSS) is a well-established research and development area. Traditional isolated, stand-alone DSS has been recently facing new challenges. In order to improve the performance of DSS to meet the challenges, research has been actively carried out to develop integrated decision support systems (IDSS). This paper reviews the current research efforts with regard to the development of IDSS. The focus of the paper is on the integration aspect for IDSS through multiple perspectives, and the technologies that support this integration. More than 100 papers and software systems are discussed. Current research efforts and the development status of IDSS are explained, compared and classified. In addition, future trends and challenges in integration are outlined. The paper concludes that by addressing integration, better support will be provided to decision makers, with the expectation of both better decisions and improved decision making processes
On a smoothed penalty-based algorithm for global optimization
This paper presents a coercive smoothed penalty framework for nonsmooth and nonconvex constrained global optimization problems. The properties of the smoothed penalty function are derived. Convergence to an ε -global minimizer is proved. At each iteration k, the framework requires the ε(k) -global minimizer of a subproblem, where ε(k)→ε . We show that the subproblem may be solved by well-known stochastic metaheuristics, as well as by the artificial fish swarm (AFS) algorithm. In the limit, the AFS algorithm convergence to an ε(k) -global minimum of the real-valued smoothed penalty function is guaranteed with probability one, using the limiting behavior of Markov chains. In this context, we show that the transition probability of the Markov chain produced by the AFS algorithm, when generating a population where the best fitness is in the ε(k)-neighborhood of the global minimum, is one when this property holds in the current population, and is strictly bounded from zero when the property does not hold. Preliminary numerical experiments show that the presented penalty algorithm based on the coercive smoothed penalty gives very competitive results when compared with other penalty-based methods.The authors would like to thank two anonymous referees for their valuable comments and
suggestions to improve the paper.
This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT
- Fundac¸ao para a Ci ˜ encia e Tecnologia within the projects UID/CEC/00319/2013 and ˆ
UID/MAT/00013/2013.info:eu-repo/semantics/publishedVersio
- …