10 research outputs found

    Pulmonary Toxicity and Adjuvant Effect of Di-(2-exylhexyl) Phthalate in Ovalbumin-Immunized BALB/c Mice

    Get PDF
    BACKGROUND: Asthma is a complex pulmonary inflammatory disease, which is characterized by airway hyperresponsiveness, variable airflow obstruction and inflammation in the airways. The majority of asthma is allergic asthma, which is a disease caused by type I hypersensitivity mediated by IgE. Exposures to a number of environmental chemicals are suspected to lead to asthma, one such pollutant is di-(2-ethylheyl) phthalate (DEHP). DEHP is a manufactured chemical that is commonly added in plastic products to make them flexible. Epidemiological studies have revealed a positive association between DEHP exposure and asthma prevalence. METHODOLOGY/PRINCIPAL FINDINGS: The present study was aimed to determine the underlying role of DEHP exposure in airway reactivity, especially when combined with allergen exposure. The biomarkers include pulmonary histopathology, airway hyperresponsiveness (lung function), IgE, IL-4, IFN-γ and eosinophils. Healthy balb/c mice were randomly divided into eight exposure groups (n = 8 each): (1) saline control, (2) 30 µg/(kg•d) DEHP, (3) 300 µg/(kg•d) DEHP, (4) 3000 µg/(kg•d) DEHP, and (5) ovalbumin (OVA)-sensitized group, (6) OVA-combined with 30 µg/(kg•d) DEHP, (7) OVA-combined with 300 µg/(kg•d) DEHP, and (8) OVA-combined with 3000 µg/(kg•d) DEHP. Experimental tests were conducted after 52-day DEHP exposure and subsequently one week of challenge with aerosolized OVA. The principal findings include: (1) Strong postive associations exist between OVA-combined DEHP exposure and serum total IgE (T-IgE), as well as histological findings. These positive associations show a dose-dependent low dose sensitive effect of DEHP. (2) IL-4, eosinophil recruitment and lung function are also indicators for adjuvant effect of DEHP. CONCLUSIONS/SIGNIFICANCE: Our results suggest that except the significant changes of immunological and inflammatory biomarkers (T-IgE, IL-4, IFN-γ and eosinophils), the pulmonary histological (histopathological examination) and physiological (lung function) data also support that DEHP may promote and aggravate allergic asthma by adjuvant effect

    The type VII secretion system of <i>Staphylococcus aureus</i> secretes a nuclease toxin that targets competitor bacteria

    Get PDF
    The type VII protein secretion system (T7SS) plays a critical role in the virulence of human pathogens including Mycobacterium tuberculosis and Staphylococcus aureus. Here we report that the S. aureus T7SS secretes a large nuclease toxin, EsaD. The toxic activity of EsaD is neutralised during its biosynthesis through complex formation with an antitoxin, EsaG, which binds to its C-terminal nuclease domain. The secretion of EsaD is dependent upon a further accessory protein, EsaE, that does not interact with the nuclease domain, but instead binds to the EsaD N-terminal region. EsaE has a dual cytoplasmic/membrane localization and membrane-bound EsaE interacts with the T7SS secretion ATPase, EssC, implicating EsaE in targeting the EsaDG complex to the secretion apparatus. EsaD and EsaE are co-secreted whereas EsaG is found only in the cytoplasm and may be stripped off during the secretion process. Strain variants of S. aureus that lack esaD encode at least two copies of EsaG-like proteins most likely to protect themselves from the toxic activity of EsaD secreted by esaD(+) strains. In support of this, a strain overproducing EsaD elicits significant growth inhibition against a sensitive strain. We conclude that T7SSs may play unexpected and key roles in bacterial competitiveness

    Dormancy within Staphylococcus epidermidis biofilms : a transcriptomic analysis by RNA-seq

    Get PDF
    The proportion of dormant bacteria within Staphylococcus epidermidis biofilms may determine its inflammatory profile. Previously, we have shown that S. epidermidis biofilms with higher proportions of dormant bacteria have reduced activation of murine macrophages. RNA-sequencing was used to identify the major transcriptomic differences between S. epidermidis biofilms with different proportions of dormant bacteria. To accomplish this goal, we used an in vitro model where magnesium allowed modulation of the proportion of dormant bacteria within S. epidermidis biofilms. Significant differences were found in the expression of 147 genes. A detailed analysis of the results was performed based on direct and functional gene interactions. Biological processes among the differentially expressed genes were mainly related to oxidation-reduction processes and acetyl-CoA metabolic processes. Gene set enrichment revealed that the translation process is related to the proportion of dormant bacteria. Transcription of mRNAs involved in oxidation-reduction processes was associated with higher proportions of dormant bacteria within S. epidermidis biofilm. Moreover, the pH of the culture medium did not change after the addition of magnesium, and genes related to magnesium transport did not seem to impact entrance of bacterial cells into dormancy.The authors thank Stephen Lorry at Harvard Medical School for providing CLC Genomics software. This work was funded by Fundacao para a Ciencia e a Tecnologia (FCT) and COMPETE grants PTDC/BIA-MIC/113450/2009, FCOMP-01-0124-FEDER-014309, FCOMP-01-0124-FEDER-022718 (FCT PEst-C/SAU/LA0002/2011), QOPNA research unit (project PEst-C/QUI/UI0062/2011), and CENTRO-07-ST24-FEDER-002034. The following authors had an individual FCT fellowship: VC (SFRH/BD/78235/2011) and AF (2SFRH/BD/62359/2009)

    Antimicrobial Resistance and Virulence: a Successful or Deleterious Association in the Bacterial World?

    No full text
    SUMMARY: Hosts and bacteria have coevolved over millions of years, during which pathogenic bacteria have modified their virulence mechanisms to adapt to host defense systems. Although the spread of pathogens has been hindered by the discovery and widespread use of antimicrobial agents, antimicrobial resistance has increased globally. The emergence of resistant bacteria has accelerated in recent years, mainly as a result of increased selective pressure. However, although antimicrobial resistance and bacterial virulence have developed on different timescales, they share some common characteristics. This review considers how bacterial virulence and fitness are affected by antibiotic resistance and also how the relationship between virulence and resistance is affected by different genetic mechanisms (e.g., coselection and compensatory mutations) and by the most prevalent global responses. The interplay between these factors and the associated biological costs depend on four main factors: the bacterial species involved, virulence and resistance mechanisms, the ecological niche, and the host. The development of new strategies involving new antimicrobials or nonantimicrobial compounds and of novel diagnostic methods that focus on high-risk clones and rapid tests to detect virulence markers may help to resolve the increasing problem of the association between virulence and resistance, which is becoming more beneficial for pathogenic bacteria

    The Physiology and Functional Genomics of Cyanobacterial Hydrogenases and Approaches Towards Biohydrogen Production

    No full text
    corecore