University of Dundee

The type VII secretion system of Staphylococcus aureus secretes a nuclease toxin that targets competitor bacteria

Cao, Zhenping; Kneuper, Holger; Casabona, M. Guillermina; Chalmers, James D.; Palmer, Tracy
Published in:
Nature Microbiology

DOI:

10.1038/nmicrobiol. 2016.183

Publication date:
2016

Document Version
Accepted author manuscript

Link to publication in Discovery Research Portal

Citation for published version (APA):
Cao, Z., Kneuper, H., Casabona, M. G., Chalmers, J. D., \& Palmer, T. (2016). The type VII secretion system of Staphylococcus aureus secretes a nuclease toxin that targets competitor bacteria. Nature Microbiology, 2, [16183]. DOI: 10.1038/nmicrobiol.2016.183

General rights

Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
- You may freely distribute the URL identifying the publication in the public portal.

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

The Ess/Type VII secretion system of Staphylococcus

 aureus secretes a nuclease toxin that targets competitor bacteriaZhenping Cao ${ }^{1}$, M. Guillermina Casabona ${ }^{1}$, Holger Kneuper ${ }^{1}$, James D. Chalmers ${ }^{2}$ and Tracy Palmer ${ }^{1}$

Division of ${ }^{1}$ Molecular Microbiology, School of Life Sciences, and ${ }^{2}$ Division of Cardiovascular \& Diabetes Medicine, School of Medicine, University of Dundee, Dundee, UK.

Summary

The type VII protein secretion system (T7SS) plays a critical role in the virulence of human pathogens including Mycobacterium tuberculosis and Staphylococcus aureus. Here we report that the S. aureus T7SS secretes a large nuclease toxin, EsaD. The toxic activity of EsaD is neutralised during its biosynthesis through complex formation with an antitoxin, EsaG, which binds to its C-terminal nuclease domain. The secretion of EsaD is dependent upon a further accessory protein, EsaE, that does not interact with the nuclease domain, but instead binds to the EsaD N-terminal region. EsaE has a dual cytoplasmic/membrane localization and membrane-bound EsaE interacts with the T7SS secretion ATPase, EssC, implicating EsaE in targeting the EsaDG complex to the secretion apparatus. EsaD and EsaE are co-secreted whereas EsaG is found only in the cytoplasm and may be stripped off during the secretion process. Strain variants of S. aureus that lack esaD encode at least two copies of EsaG-like proteins most likely to protect themselves from the toxic activity of EsaD secreted by esaD+ strains. In support of this, a strain overproducing EsaD elicits significant growth inhibition against a sensitive strain. We conclude that T7SSs may play unexpected and key roles in bacterial competitiveness.

Protein secretion systems are used by bacteria to interact with and manipulate their environments, and play critical roles in the secretion of virulence factors. Gram-negative bacteria produce numerous secretion systems that transport substrates across the cell envelope ${ }^{1}$. Many Gram-positive bacteria also produce a specialised protein secretion machinery termed the Type VII secretion system (T7SS). T7SSs are found in representatives of the Actinobacteria and Firmicutes phyla. The system was first described in the Actinobacterial pathogens Mycobacterium tuberculosis and M. bovis where T7SS ESX-1 was shown to be essential for virulence and to secrete two small proteins ESAT-6 and CFP-10, subsequently renamed EsxA and EsxB ${ }^{2-4}$. In addition to secreting EsxA/B proteins, Mycobacterial T7SSs can also secrete much larger proteins of the PE/PPE family ${ }^{5}$, which are highly abundant in the genomes of some species ${ }^{6}$.

A distantly related T7SS, termed T7b7, is also found in Firmicutes such as Bacillus subtilis ${ }^{8,9}$ and Staphylococcus aureus ${ }^{10}$. T7SSs share two common types of components: a membranebound hexameric ATPase of the FtsK/SpolIIE protein family ${ }^{11,12}$ and at least one EsxA/EsxBrelated protein ${ }^{11}$. EsxA and EsxB are members of the WXG100 superfamily that form dimeric helical hairpins ${ }^{13,14}$, and in Firmicutes EsxA is exported as a folded homo-dimer ${ }^{14,15}$. The S. aureus Ess system comprises six core components ${ }^{10,16}$ (Figs 1A; S1). In addition to EssC, three further membrane proteins EsaA, EssA, EssB are essential for T7 secretion activity ${ }^{16,17}$ along with the secreted protein EsxA ${ }^{10}$ and the predicted cytoplasmic protein EsaB ${ }^{16}$. All except one strain of S. aureus examined to date encode the six core T7 components but there is strain variability in the repertoire of T 7 substrate proteins ${ }^{18}$. Studies using strains with the NCTC8325 T7S gene cluster organisation, including Newman, USA300 and RN6390 have identified EsxB, EsxC and EsxD as secreted substrates ${ }^{10,16,19,20}$. These three proteins are small ($\sim 100-130$ aa), and their precise functions remain to be elucidated.

The T7SS has previously been shown to contribute to virulence in mouse infection models ${ }^{10,16,21}$ and to facilitate release of intracellular S. aureus from epithelial cells ${ }^{22}$. Here we identify a further function for the S. aureus T7SS in bacterial competition. We show that EsaD is a 77 nuclease substrate that interacts with two Ess accessory proteins, EsaG, an antitoxin, and EsaE, a putative chaperone, during its biosynthesis. Strains of S. aureus that do not encode the EsaD substrate harbour esaG homologues, most likely to protect themselves from killing by EsaD-producing strains. In support of this we demonstrate EsaD-dependent growth inhibition of S. aureus. Our findings confirm that the Gram-positive T7SS has anti-bacterial activity in addition to anti-eukaryotic function.

Results

EsaD is not required for T7SS activity. EsaD is encoded within the T7SS gene cluster (Fig 1a) and has been reported to be a membrane-bound T7SS accessory factor ${ }^{23}$, however its absence from some S. aureus strains indicates it is unlikely to be a critical component of the secretion machinery ${ }^{18}$. We constructed an in-frame esaD deletion and asked whether it was
required for secretion of the core component EsxA and the substrate protein EsxC. Fig 1b shows that EsxA was still secreted by the esaD strain, but very little EsxC was detected. To circumvent this we overproduced EsxC from a plasmid (Fig 1c), and in this case could clearly detect EsxC in culture supernatants of the esaD strain. We conclude that EsaD is not essential for T7-dependent secretion.

EsaD is a predicted nuclease that is secreted by the T7SS. EsaD encoded by strain NCTC8325 is predicted to be a 614 residue protein, and sequence analysis suggests that the C-terminal ~ 170 aa comprise a nuclease domain (Fig S2). In accord with EsaD having toxic activity, we were unable to clone esaD unless we introduced a H528A codon substitution at the predicted nuclease active site. When HA-tagged EsaD(H528A) was produced in either S. aureus RN6390 or COL strains, tagged protein was detected in the supernatant (Fig 1d, e). The lack of EsaD in supernatants of the cognate essC strains strongly suggests that EsaD is a T7SS secreted substrate.

EsaD has previously been reported as a membrane protein ${ }^{23}$. However, topology prediction programmes (e.g. TMHMM) do not predict transmembrane regions. To explore the location of cellular EsaD we fractionated cells producing EsaD(H528A)-HA and Fig 1f shows the tagged protein (migrating as a double band) was clearly detected only in the cytoplasmic fraction. We conclude EsaD is not a membrane protein.

EsaD has toxic activity that is neutralised by EsaG. To confirm that EsaD is a toxin, it was essential to clone the wild-type gene. We could readily clone esaD if the downstream gene, esaG, was included, but not if this sequence was omitted. We were eventually able to obtain a clone of esaD in $\mathrm{pT7} .5^{24}$. Expression of genes from this vector is under control of the T7 promoter which is not recognised by E. coli RNA polymerase. Even so, the clone we obtained, which gave very small colonies, harboured a V 584 Y substitution. We reasoned that this might serve to lower the stability/toxicity of EsaD. When this construct was introduced into E. coli BL21(DE3) (that encodes an inducible copy of the phage T7 RNA polymerase), growth ceased when the inducer, IPTG was added (Fig 2a) but cells continued to grow if esaG was co-
expressed with wild type esaD. We conclude that EsaD has toxic activity that is modulated by EsaG.

Examination of E. coli cells by microscopy showed that production of $\mathrm{EsaD}(\mathrm{V} 584 \mathrm{Y})$ resulted in cell elongation (Fig S3a,b), a hallmark of the SOS response induced by DNA damage ${ }^{25,26}$, consistent with EsaD exhibiting DNase activity. We confirmed EsaD-induced DNA damage using TUNEL, which labels the ends of fragmented DNA ${ }^{27,28}$. Fluorescence microscopy showed TUNEL staining in a subset of cells producing EsaD(V584Y) (Fig S3c) that could also be detected by flow cytometry (red dots in FACS plot in Fig S3d). Production of EsaD was also associated with an increase in side scatter, consistent with changes in cellular morphology seen by microscopy. We conclude that EsaD results in DNA damage when produced in the cytoplasm of E. coli.

EsaG interacts with the nuclease domain of EsaD. The presence of esaG counteracts the toxic activity of EsaD suggesting that esaG is an antitoxic gene. Antitoxins may be proteins or RNA ${ }^{29}$. Inspection of esaG indicates that it is a probable protein-coding gene, producing a protein of the uncharacterised DUF600 family. To investigate whether EsaG interacts with EsaD we co-produced EsaD(H528A)-His with EsaG-HA in S. aureus and purified tagged EsaD from cell lysates. Fig 2c shows that EsaG co-purifies with EsaD indicating the proteins form a complex.

EsaD-EsaG interaction was also confirmed by bacterial two hybrid assay (Fig 2b). EsaG (163 aa) is significantly smaller than EsaD, suggesting it may interact with only part of EsaD. We genetically separated EsaD into predicted nuclease domain (EsaD ${ }_{421-614 \text {, harbouring }}$ the H528A codon substitution) and N-terminal region (EsaD 1-420). Fig 2b shows that EsaG interacts specifically with the predicted nuclease domain. This was confirmed biochemically by co-purification of EsaG-HA with His-tagged EsaD ${ }_{421-614}$ (Fig 2d). We conclude that EsaG is a proteinaceous antitoxin that blocks EsaD activity by direct interaction.

To investigate directly whether EsaD has DNase activity, we overproduced His-tagged wild type or H528A variants of the nuclease domain in E. coli in the presence of EsaG and purified His-tagged EsaD in the presence of 8 M urea to unfold the protein and detach bound EsaG
(Fig 2e). After refolding and eluting from the Ni-resin, the EsaD nuclease domains were incubated with plasmid DNA in the presence of Mg^{2+} or Zn^{2+} ions. Fig $2 f$ shows that wild type EsaD specifically degraded plasmid DNA in the presence of Mg^{2+}, and could also degrade genomic and linear DNA (Fig S5). The H528A variant showed some DNAse activity, but appeared to be much less potent than EsaD, as expected. We conclude that EsaD is a Mg^{2+} dependent DNase.

Fractionation of cells overproducing tagged EsaG shows that it is found exclusively in the cytoplasm (Fig S6). However, as the T7SS can export protein complexes ${ }^{15}$, we tested whether it could be co-secreted if overproduced with EsaD. Fig S7 shows that in the presence of secreted EsaD(H528A), EsaG localised only to the cell fraction and does not appear to be cosecreted with its partner protein. We then asked whether EsaG was required for secretion of EsaD. We were not able to delete esaG from S. aureus unless we also deleted esaD, consistent with its antitoxic role. Production of HA-tagged EsaD(H528A) in the esaDG mutant strain resulted in no detectable EsaD in the supernatant and very little in the cells (Fig S8). We conclude that EsaG is required for the stability/secretion of EsaD. EsaG was not, however, required for the secretion of either EsxA or EsxC (Fig S9) and is therefore not a general T7S accessory factor.

EsaE also interacts with EsaD and is required for its secretion or stability. Studies of Mycobacterial T7SS have revealed that PE/PPE substrate proteins interact with specific chaperones that facilitate their secretion ${ }^{30-32}$. To investigate whether any additional soluble proteins encoded at the S. aureus T7SS locus interact with EsaD, we used bacterial two hybrid analysis. Fig 3a shows no evidence for EsaD interaction with any known secretion substrates (EsxB, EsxC or EsxD) or soluble machinery components (EsaB or EsxA). Interaction was detected between EsaD and EsaE, which was also confirmed biochemically as EsaE-HA copurified with EsaD(H528A)-His when the two proteins were co-produced in S. aureus (Fig 3b). To determine whether EsaE interacted with the nuclease domain of EsaD or elsewhere on the
 results show that EsaE specifically interacts with the non-nuclease region of EsaD. We tried
to confirm these genetic observations with co-purification experiments but were not able to stably produce the truncated EsaD ${ }_{1-420}$.

We constructed an in-frame deletion of esaE to determine whether it was required for EsaD secretion. We were readily able to obtain the esaE mutant, consistent with EsaE not being an antitoxin but playing some other role in EsaD biosynthesis. Production of HA-tagged EsaD(H528A) in this strain resulted in no detectable EsaD in the supernatant and very little in the cells (Fig S8), suggesting EsaE is required for its stability or secretion. Although EsaE was not required for EsxA secretion, there was no apparent secretion of EsxC in the esaE mutant, even if EsxC was overproduced from a plasmid (Fig S9). Thus EsaE is required for efficient secretion of EsaD and at least one further T7SS substrate.

His-tagged EsaE was found almost exclusively in the cellular fraction, suggesting it is not, by itself, a T7SS substrate (Fig 3d). We did, however, routinely observe that overproduction of tagged EsaE led to a dramatic increase in the level of extracellular EsxA (Fig 3d), for reasons that are unclear. However, when EsaE-His was co-produced with EsaD(H528A)-HA, notable secretion of His-tagged EsaE could now be detected suggesting that these two proteins are co-exported as a complex.

EsaD/E/G form a ternary complex. We next assessed whether EsaD could form a ternary complex with EsaE and EsaG. Control experiments (Fig S10) showed no direct interaction between EsaE and EsaG by either two hybrid or co-purification experiments. When EsaD(H528A)-Myc, EsaE-HA and EsaG-His were co-produced in E. coli and EsaE-HA immunoprecipitated, EsaG-His and Myc-tagged EsaD were also co-precipitated, consistent with the three proteins forming a ternary complex ($\mathrm{Fig} 3 \mathrm{f}, \mathrm{g}$). Reciprocal experiments where His-tagged EsaG was isolated by Ni-affinity purification resulted in co-purification of EsaE-HA and EsaD-Myc (Fig S12). In this latter experiment, although some full length EsaD-Myc was detected, most of the protein was fragmented to the approximate size of the nuclease domain, consistent with the prior instability of EsaD ${ }_{1-420}$ noted previously.

EsaE interacts with the multimeric form of EssC. Although EsaE is predicted to be soluble, subcellular fractionation showed a proportion of His-tagged EsaE localised to the membrane
and was stable to carbonate washing (Fig 4a). As EsaE has a dual cytoplasmic-membrane location, we wondered whether it may play a role in targeting EsaD/EsaG to the membranebound secretion machinery. We undertook formaldehyde crosslinking experiments in whole cells of S. aureus producing EsaE-His, isolated membranes and blotted for EsaE. Fig 4b shows several EsaE-His crosslinks, including a particularly strong crosslink migrating above 250 kD. It has previously been shown that the S. aureus T7 ATPase, EssC, forms a high molecular weight multimer ${ }^{17,33}$. To ascertain whether this high molecular weight crosslink also contained EssC, we repeated the crosslinking experiments in the wild type and essC mutant strains. Fig 4c shows that the EsaE-His-containing crosslink migrated with an apparently identical mass as the EssC-containing crosslink and moreover, no such crosslink was detected when essC was deleted. We conclude that the membrane-bound form of EsaE interacts with the multimeric form of EssC.

These results suggest a model for the biosynthesis and secretion of EsaD (Fig 4d), whereby the interaction of EsaG and EsaE with their respective binding domains on EsaD is essential for maintaining EsaD in a catalytically-inactive, secretion-competent conformation. Our findings support the idea that targeting of the protein complex to the T7 secretion machinery is by virtue of the interaction between EsaE and the assembled EssC multimer and that EsaG is stripped from the complex at some point during secretion and remains in the cytoplasm. Thus EsaD is released from the cell in a form that is immediately active, and the EsaG immunity protein remains in the producing cell where it may potentially serve further protective functions.

Secreted EsaD inhibits the growth of sensitive strains of S. aureus. We next addressed potential roles for EsaD. Gram-negative bacteria utilise a subset of their protein secretion systems to target toxins at bacterial competitors as well as at eukaryotic cells ${ }^{34-38}$. It was noted previously that although approximately 50% of S. aureus strains do not carry esaD, they encode at least two homologues of esaG close to their T7SS gene clusters ${ }^{18}$ (Fig 5a) suggesting they may produce EsaG-type proteins as a protective mechanism to prevent killing by EsaD-producing strains. To probe this, we assessed whether EsaG homologues from non
esaD-containing strains MRSA252, ST398 and EMRSA15 could interact with EsaD(H528A) using two hybrid analysis. At least one EsaG homologue from each strain was able to interact with EsaD (Fig 5b), supporting the idea that orphan EsaG proteins serve to protect S. aureus from EsaD nuclease toxins.

A common feature of bacterial toxins, particularly those involved in interspecies competition, is that that they are polymorphic ${ }^{39,40}$. Comparison of EsaD sequences across esaD-encoding S. aureus strains shows extensive sequence variability within the nuclease domain but away from the predicted catalytic site (centred around H528; Fig S13). A likely explanation is that substitutions in this region of EsaD alter affinity for a cognate EsaG antitoxin and render normally resistant strains susceptible to attack by EsaD sequence variants. In this context it is interesting to note a cluster of EsaG homologues are encoded directly downstream of esaDG in S. aureus esaD-containing strains that is highly variable in number ${ }^{18}$. For example NCTC8325 encodes five of these (Fig 5a), whereas COL encodes eleven. These genes are not co-transcribed with esaDG in strain RN6390 (Fig S14), however analysis of RNA-seq data from ${ }^{18}$ indicated that transcripts from these genes are present under laboratory growth conditions.

We could readily delete the cluster of esaG-like genes from RN6390 indicating they are not required to neutralise EsaD, consistent with our prior conclusion that EsaG itself is the cognate EsaD antitoxin. Loss of this esaG-like gene cluster, or indeed absence of all EsaG-encoding proteins (including EsaG) also did not affect the secretion of EsxA or EsxC (Fig S9) confirming these proteins are not essential components of the T7SS machinery. However, two hybrid assay shows that they are able to interact with EsaD (Fig 5c), but that the interaction is not as strong as that seen for EsaD-EsaG, raising the possibility that they serve to protect RN6390 from EsaD sequence variants produced by other strains of S. aureus.

Together, the results presented above strongly suggest that S. aureus uses its T7SS to secrete a nuclease toxin that targets rival bacteria. To confirm this, we used S. aureus strain COL, which shows the highest level of T7S activity in laboratory growth media ${ }^{16}$ producing plasmid-encoded EsaDG as attacker, and incubated it with variants of strain RN6390. Fig 5d
shows that there is an approximate two-log decrease in recovered prey cells when they are co-cultured with a T7SS ${ }^{+}$strain of COL compared with a T7SS mutant strain, demonstrating there is T7-dependent growth inhibition. Importantly, this is completely dependent upon the toxic activity of EsaD as COL producing the H528A variant of EsaD no longer exhibited detectable growth inhibition (Fig 5d). Finally, as expected, EsaG offered some protection against the inhibitory effect of secreted EsaD as the RN6390 wild type tended to be less susceptible to EsaD-dependent growth inhibition than a strain lacking EsaG homologues, and the protective effect was enhanced by overproduction of plasmid-encoded EsaG in the prey cells. We conclude that S. aureus can use its T7SS to target bacterial competitors.

Discussion

It is well established that T7SSs play critical roles in mammalian infection and virulence. Here we demonstrate an important novel role for the S. aureus T7SS in the secretion of a nuclease toxin, EsaD, involved in interspecies competition. Thus, akin to the Gram-negative Type VI secretion system ${ }^{34,41}$, the T7SS appears to target eukaryotes and rival bacteria.

EsaD is the largest known substrate of the T7b system and the only one for which a function has been identified. We have shown that two T7 accessory factors are essential for the biogenesis of EsaD - EsaG that binds to and neutralises the toxic activity of the nuclease domain and EsaE that interacts with, and potentially stabilises, the N-terminal region. In this context it is interesting to note that large substrates of the Mycobacterial T7a system such as the PE/PPE proteins interact with specific chaperones of the EspG family that keep them in a secretion-competent state ${ }^{32}$ and deliver them to the cognate secretion machinery ${ }^{31}$. Although there is no detectable sequence similarity between EspG proteins and EsaE, it is possible that the proteins have analogous functions in the two distantly related secretion machineries.

The presence of T7SSs in non-pathogenic organisms such as Streptomyces coelicolor ${ }^{42}$ and Bacillus subtilis ${ }^{8,9}$ has previously been noted. Here we offer a likely explanation for the
presence of this secretion system in environmental strains. We have demonstrated that secreted EsaD inhibits the growth of sensitive strains of S. aureus, indicating this nuclease toxin is used to target competitor bacteria. In support, strains of S. aureus lacking esaD encode at least two copies of the EsaG-like antitoxin, presumably as a protective mechanism. It is interesting to note that an EsaD homologue has been reported in B. subtilis ${ }^{23}$ that likely has toxic activity ${ }^{43}$, inferring that modulating bacterial competition is a conserved role for T7SSs.

It is currently not known how EsaD accesses the cytoplasm of target cells. There is no evidence that T7SSs form large extracellular needle-like structures that could deliver toxins directly into target cells, like to those seen for the Gram-negative Type III, IV and VI secretion systems ${ }^{1}$. Instead we suggest that EsaD is released into the environment where it binds to receptors on sensitive cells in a similar manner as bacteriocins and contact-dependent growth inhibition (CDI) toxins, as the first step in a cell entry pathway ${ }^{44,45}$. Further work will be required to dissect out the mechanism by which EsaD interacts with and traverses the cell envelope of S. aureus.
S. aureus is an important pathogen in polymicrobial human infections, for example infections of the skin and lung. Whether EsaD-mediated interspecies competition is critical for the establishment of virulence in animal and human infections and whether there are additional antibacterial toxins secreted by the S. aureus T7SS remain to be established.

Methods

Bacterial strains and growth conditions: Strains and plasmids used in this study are listed in Tables S1 and S2. S. aureus strains were grown in TSB medium at $37^{\circ} \mathrm{C}$ under vigorous agitation. Where required, chloramphenicol (Cm) at a final concentration of $10 \mu \mathrm{~g} / \mathrm{ml}$ was added for plasmid selection. Anhydrotetracycline (ATC) was used as a selection during allelic gene replacement using the pIMAY system ($1 \mu \mathrm{~g} / \mathrm{ml}^{46}$) or for induction of target gene expression from the pRAB11 plasmid ${ }^{47}$; the concentrations used in each experiment are listed
in the appropriate figure legends). Escherichia coli was grown aerobically in Lysogeny broth (LB) at $37^{\circ} \mathrm{C}$. If required, cultures were supplemented with ampicillin (Amp, $100 \mu \mathrm{~g} / \mathrm{ml}$), Kanamycin (Kan, $50 \mu \mathrm{~g} / \mathrm{ml}$) or $\mathrm{Cm}(15 \mu \mathrm{~g} / \mathrm{ml})$ for plasmid selection. Induction of plasmidencoded gene expression was achieved by addition of isopropyl- β-D-galactopyranoside (IPTG), as indicated in the text. Light microscopy was carried out using a Zeiss light/fluorescence microscope with a 100x oil objective and images captured using an AXIO camera (Zeiss). The light microscopy images in Fig S3a were performed twice using different biological samples, representative images are shown. Bacterial two-hybrid analyses were performed as described ${ }^{48}$; quantitative assessment of protein interactions was undertaken by plating onto MacConkey medium ${ }^{49}$ containing 0.4% maltose as carbon source, and quantified by β-galactosidase assays (according to the method of ${ }^{50}$) on strains grown to exponential phase at $30^{\circ} \mathrm{C}$ and permeabilized with toluene. For all of the bacterial two hybrid experiments reported (Figs 2b, 3a, 3c, 5b, 5c, S10a) each interaction pair was scored on MacConkey maltose on at least four different occasions and β-galactosidase assays were performed at least twice, and representative results are presented. RT-PCR was undertaken on RNA prepared from S. aureus strain RN6390 grown aerobically in TSB to an OD_{600} of 2, as described previously ${ }^{16}$ using primer pairs listed in Table S3, and was performed twice (on the same biological sample - results presented in Fig S14b are representative).

Strain and plasmid construction: All oligonucleotide primers used in this study and cloning strategies to generate the strains and plasmids are outlined in Table S3. In-frame deletions of S. aureus genes were performed by allelic exchange using pIMAY ${ }^{46}$. For each gene, the upstream and downstream regions including at least the first three and last three codons were amplified from RN6390 genomic DNA using primers listed in Table S3. Clones were selected in E. coli, verified by DNA sequencing and introduced into S. aureus RN6390 strains by electroporation. Chromosomal deletions were verified by amplification of the genomic region from isolated genomic DNA (GeneElute Bacterial Genomic DNA Kit, Sigma Aldrich) and DNA sequencing of the amplified products.

To construct strains specifying chromosomally-encoded erythromycin resistance, the erythromycin resistance gene, ermC, was integrated into the RN6390 genome after base pair 14208 as this region was found to be devoid of transcriptional activity in the closely related strain NCTC 8325-451. A synthetic construct comprising ermC from Staphylococcus lentus plasmid pSTE2 under control of the rpsF promoter from Bacillus subtilis (purchased from Biomatik; sequence given in Fig S16) was cloned into pIMAY and integrated into the chromosome giving RN6390::ermC. Integration of the resistance gene was confirmed by sequencing and by testing for growth in the presence of $5 \mu \mathrm{~g} / \mathrm{ml}$ erythromycin. Subsequently the ermC cassette was transduced from RN6390::ermC into other strains using phage $\phi 11$ as described ${ }^{52}$. Transduction was confirmed by PCR amplification using oligonucleotides Intctrl1 and Intctrl2 (Table S3).

Bacterial competition experiments: Overnight cultures of the indicated strains were subcultured in TSB (supplemented with $2 \mu \mathrm{M}$ hemin for attacker strains) and antibiotics as required and cultured with shaking at $37^{\circ} \mathrm{C}$. Once OD_{600} of 0.5 was reached, induction of EsaD-HA and EsaG-His production in the attacker strains was initiated by the addition of 500 $\mathrm{ng} / \mathrm{ml}$ of ATC. When cells reached OD_{600} of $2,20 \mathrm{ml}$ of attacker strain, and 1 ml of prey were separately harvested and resuspended in 1 ml of TSB. 100ul of resuspended attacker cells were mixed with the same volume of prey cells (giving a 20:1 ratio) and incubated at $37^{\circ} \mathrm{C}$ with shaking for 16 h in sterile Eppendorf tubes. Co-cultures were then serially diluted in TSB and plated on selective agar (LB $+5 \mu \mathrm{~g} / \mathrm{ml}$ erythromycin as all prey strains carried chromosomally-integrated ermC conferring resistance to erythromycin) for colony-forming unit determination. For experiments where plasmid-encoded EsaG-His was produced in prey cells, once strain RN6390 pEsaG-His reached an OD_{600} of 0.5, EsaG-His production was initiated by the addition of $250 \mathrm{ng} / \mathrm{ml}$ of ATC and cultured until an OD_{600} of 2 was reached after which they were used as prey as described above.

TUNEL assay for DNA fragmentation: DNA fragmentation was detected in fixed cells of E. coli BL21(DE3) harbouring pT7.5esaD and pT7.5esaDG using the Deadend fluorometric TUNEL system kit (Promega). This was undertaken on two biological replicates and
representative results are shown in FigS3 c and d. Following induction of EsaD production by treating cell cultures with 1 mM IPTG for 3 hours, cells were pelleted, washed twice with PBS and fixed with 4\% formaldehyde in PBS for 30 minutes on ice. Following a further wash with PBS, cells were permeabilized with 1.5% triton X-100 solution in PBS for 1 hour on ice and stored in 70% ice cold ethanol at $-20^{\circ} \mathrm{C}$ overnight. The following day cells were spun down, washed and resuspended in equilibration buffer for 1 hour at $37^{\circ} \mathrm{C}$. The cells were incubated in the dark for 2 hours with fluorescein 12-dUTP and recombinant terminal deoxynucleotidyl transferase (rTdT), after which the reaction was quenched by addition of $2 x$ SCC buffer, and the cells washed with PBS. Following this fluorescein-labelled cells were spotted onto poly-D-lysine-treated slides and analysed by fluorescence microscopy using a Zeiss fluorescence microscope with a 100x oil objective and images captured using an AXIO camera (Zeiss), or detected and quantitated directly by flow cytometry (Flow cytometry Facility, Dundee University). Negative control samples were treated identically except that no rTdT was added. Purification of the EsaD nuclease domain: E. coli strain M15[prep4] harbouring pQE70-EsaG-EsaG-EsaD ${ }_{421-614-H i s ~ o r ~ p Q E 70-E s a G-E s a G-E s a D ~}^{421-614}(\mathrm{H} 528 \mathrm{~A})$-His was cultured to OD_{600} of 0.5 at $37^{\circ} \mathrm{C}$, after which 1 mM IPTG was added to each culture. An aliquot of the cells were harvested after 4 hours induction and resuspended in lysis buffer and the remainder of the cells were pelleted and frozen at $-80^{\circ} \mathrm{C}$ for 30 mins. The nuclease domain of EsaD was subsequently purified following a protocol based on that described at http://openwetware.org/wiki/Knight:Purification_of_Histagged_proteins/Denaturing_with_refolding with some modifications, and was undertaken once for each variant (Fig 2e). Briefly, the thawed pellets were resupended in lysis buffer (8 M Urea, $100 \mathrm{mM} \mathrm{NaH} 2_{2} \mathrm{PO}_{4}, 10 \mathrm{mM}$ Tris• $\mathrm{HCl}, 10 \mathrm{mM}$ imidazole, 1 mM PMSF, pH 8.0) and sonicated for 2 mins on ice. The cell lysate was centrifuged at $13,200 \times \mathrm{g}$ for 30 min at $4^{\circ} \mathrm{C}$. Nickel affinity resin (Biorad) was equilibrated with lysis buffer and added to the cleared lysate and gently mixed on a rotary shaker for 2 h at $4^{\circ} \mathrm{C}$. The resin was washed five times with denaturing wash buffer (8 M Urea, $100 \mathrm{mM} \mathrm{NaH} 2_{2} \mathrm{PO}_{4}, 150 \mathrm{mM} \mathrm{NaCl}, 20 \mathrm{mM}$ imidazole, 1 mM PMSF, pH 8.0) followed by five washes with native wash buffer ($50 \mathrm{mM} \mathrm{NaH} \mathrm{PO}_{4}, 500 \mathrm{mM}$
$\mathrm{NaCl}, 20 \mathrm{mM}$ imidazole, 1 mM PMSF, pH 8.0). Finally, the bound protein was eluted into 200 $\mu \mathrm{l}$ of elution buffer ($50 \mathrm{mM} \mathrm{NaH} \mathrm{PO}_{4}, 500 \mathrm{mM} \mathrm{NaCl}, 250 \mathrm{mM}$ imidazole, 1 mM PMSF, pH 8.0). For nuclease assays, 800 ng of plasmid pT18 was incubated with $0.4 \mu \mathrm{~g}$ of purified EsaD_{421} -
 hour in a final volume of 20μ l the presence of either 50 mM MgCl 2 or ZnCl_{2} as indicated, after which the DNA was analysed by agarose gel electrophoresis. These assays were each performed three times and representative results are presented in Figs $2 f$ and S5.

Cell fractionation, crosslinking and western blotting: For the isolation of cell and supernatant fractions to assess secretion activity, S. aureus strains were subcultured at 1/100 from an overnight grown pre-culture into fresh TSB medium. At $\mathrm{OD}_{600 \mathrm{~nm}}$ of 2, cells were harvested and the supernatant samples precipitated with trichloroacetic acid in the presence of deoxycholate, as described previously ${ }^{16}$. Harvested cell samples were washed once with PBS buffer, normalized to an OD_{600} of 2 in PBS and lysed by addition of $50 \mu \mathrm{~g} / \mathrm{ml}$ lysostaphin with incubation at $37^{\circ} \mathrm{C}$ for 30 min . All samples were mixed with an equal volume of LDS buffer and boiled for 10 min prior to analysis. For the secretion experiments shown in Fig 1b, 1c, 1e, S9a, S9b and S14 representative images are shown from at least two biological replicates, and in Figs 1d, 3d, 3e, S7 and S8 representative images are shown from at least six biological replicates. The fractionation of cells to give cell wall, membrane and cytoplasmic fractions was undertaken as described by ${ }^{16}$. Carbonate-washing of membranes was undertaken according to ${ }^{53}$. All fractionation experiments (Figs 1f, 3a and S6) were undertaken at least twice on separate biological samples, with representative results presented.

Formaldehyde crosslinking of cells was undertaken as described previously ${ }^{17}$ and crosslinking experiments were performed twice on separate biological samples - the results presented in Fig 3b and c are representative results. Western blotting was performed according to standard protocols using the following antibody dilutions: $\alpha-E_{s x A^{16}} 1: 2500, \alpha-E_{s x C}{ }^{16} 1: 2000, \alpha-E s s C^{16}$ 1:10000, α-TrXA ${ }^{54}$ 1:25000, α-SrtA (Abcam, catalogue number ab13959) 1:3000, α-HA (HRPconjugate, Sigma catalogue number H6533) 1:10000, α-His (HRP-conjugate, Abcam
catalogue number ab184607) 1:10000, α-Myc (HRP-conjugate, Invitrogen catalogue number R951-25) 1:5000, and goat anti Rabbit IgG HRP conjugate (Bio-Rad, catalogue number 1706515) 1:10000.

Protein purification by nickel affinity isolation or immunoprecipitation: Cells of E. coli or S. aureus, grown as described in the figure legends, were harvested and resuspended in either ice cold (i) resuspension buffer ($200 \mathrm{mM} \mathrm{NaCl}, 20 \mathrm{mM}$ HEPES, pH 7.2) for Ni affinity purification or (ii) phosphate-buffered saline (PBS) for immunoprecipitation. Samples were then supplemented with a few flakes of DNase I, 1 mM PMSF and either lysozyme (for E. coli) or lysostaphin (for S. aureus). The samples were incubated at $37^{\circ} \mathrm{C}$ for $0.5-1$ hour with gentle mixing on a rotating wheel after which cells were lysed by French press (for E. coli) or sonication (S. aureus). Unbroken cells and cellular debris was pelleted by centrifugation at $17,000 \mathrm{~g}$ and $4^{\circ} \mathrm{C}$ for 30 min and the supernatant was retained as the cell lysate. All protein purification experiments shown in Figs 2c, 2d, 3b, 3f, 3g, S4, S10b, S11 and S12 were performed at least twice with different biological replicates.

For Ni-affinity purification, $100 \mu \mathrm{INi}$-NTA resin (Biorad, catalogue number 156-0131) was equilibrated by washing twice in 1 ml ice cold wash buffer ($200 \mathrm{mM} \mathrm{NaCl}, 15 \mathrm{mM}$ imidazole, 20 mM HEPES, pH 7.2). Cell lysate was diluted to $5 \mu \mathrm{~g} / \mu \mathrm{l}$ protein in ice cold wash buffer (200 $\mathrm{mM} \mathrm{NaCl}, 15 \mathrm{mM}$ imidazole, 20 mM HEPES, pH 7.2) in a final volume of 1.2 ml , added to the equilibrated Ni-NTA resin and gently agitated for 1 hour at $4^{\circ} \mathrm{C}$. The Ni-NTA resin was pelleted by centrifugation, washed four times with 1 ml ice cold wash buffer and finally resuspended in $100 \mu \mathrm{l}$ elution buffer ($200 \mathrm{mM} \mathrm{NaCl}, 300 \mathrm{mM}$ imidazole, 20 mM HEPES, pH 7.2), mixing at $4^{\circ} \mathrm{C}$ for 1 hour. The Ni-NTA resin was pelleted, the supernatant carefully removed and retained as the eluted fraction.

For immunoprecipitation, 40-100 μ l of Anti-HA Agarose bead suspension (Sigma, catalogue number A2095) were pelleted, washed twice with PBS and mixed with cell lysate which was diluted to $5 \mu \mathrm{~g} / \mu \mathrm{l}$ in $200 \mu \mathrm{l}$ PBS. The suspension was incubated with agitation for at least 1 hour at $4^{\circ} \mathrm{C}$ after which the beads were pelleted and washed four times with 1 ml ice cold wash

PBS. After the final wash the supernatant was aspirated to leave $\sim 30 \mu$ l of PBS above the beads for final resuspension.

All correspondence and requests for materials should be addressed to Tracy Palmer

Acknowledgements

This study was supported by the UK Biotechnology and Biological Sciences Research Council [grant BB/H007571/1] the Medical Research Council [grants G117/519 and MR/M011224/1] the Wellcome Trust [through Early Postdoctoral Training Fellowship for Clinician Scientists WT099084MA to JDC, Investigator Award 110183/Z/15/Z to TP and Institutional Strategic Support Fund 105606/Z/14/Z to the University of Dundee], Tenovus Scotland [through project grant T14/10] and a China Scholarship Council PhD studentship (to ZC). We thank Dr Grant Buchanan for constructing some of the bacterial two hybrid clones used in this study, Dr James Cargill for advice with synthetic construct design and co-purification experiments, Marilia Costa for her assistance with microscopy, Dr Ewan Murray and Professor Paul Williams (University of Nottingham) for supplying us with phage \$11, Professor Jan-Maarten van Dijl (University of Groningen) for the kind gift of anti-TrxA antiserum, Professor Ralph Bertram (University of Tübingen) for pRAB11 and Professor Frank Sargent and Dr Sarah Coulthurst for helpful discussion and advice.

Author contributions - ZC, MGC, HK, JDC and TP designed experiments, ZC, MGC and HK carried out experimental work, ZC, MGC, HK, JDC and TP undertook data analysis, TP wrote the paper.

References

1 Costa, T. R. et al. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol 13, 343-359, doi:10.1038/nrmicro3456 (2015).
2 Pym, A. S. et al. Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nature medicine 9, 533-539 (2003).
3 Hsu, T. et al. The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proceedings of the National Academy of Sciences of the United States of America 100, 12420-12425 (2003).
4 Stanley, S. A., Raghavan, S., Hwang, W. W. \& Cox, J. S. Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proceedings of the National Academy of Sciences of the United States of America 100, 13001-13006 (2003).
5 Abdallah, A. M. et al. A specific secretion system mediates PPE41 transport in pathogenic mycobacteria. Molecular microbiology 62, 667-679 (2006).
6 Cole, S. T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537-544, doi:10.1038/31159 (1998).
7 Abdallah, A. M. et al. Type VII secretion--mycobacteria show the way. Nat Rev Microbiol 5, 883-891 (2007).
8 Baptista, C., Barreto, H. C. \& Sao-Jose, C. High levels of DegU-P activate an Esat-6like secretion system in Bacillus subtilis. PLoS ONE 8, e67840, doi:10.1371/journal.pone. 0067840 (2013).
9 Huppert, L. A. et al. The ESX system in Bacillus subtilis mediates protein secretion. PLoS ONE 9, e96267, doi:10.1371/journal.pone. 0096267 (2014).
10 Burts, M. L., Williams, W. A., DeBord, K. \& Missiakas, D. M. EsxA and EsxB are secreted by an ESAT-6-like system that is required for the pathogenesis of Staphylococcus aureus infections. Proceedings of the National Academy of Sciences of the United States of America 102, 1169-1174 (2005).
11 Pallen, M. J. The ESAT-6/WXG100 superfamily -- and a new Gram-positive secretion system? Trends in microbiology 10, 209-212 (2002).
12 Rosenberg, O. S. et al. Substrates Control Multimerization and Activation of the MultiDomain ATPase Motor of Type VII Secretion. Cell 161, 501-512, doi:10.1016/j.cell.2015.03.040 (2015).
13 Renshaw, P. S. et al. Structure and function of the complex formed by the tuberculosis virulence factors CFP-10 and ESAT-6. The EMBO journal 24, 2491-2498, doi:10.1038/sj.emboj. 7600732 (2005).
14 Sundaramoorthy, R., Fyfe, P. K. \& Hunter, W. N. Structure of Staphylococcus aureus EsxA suggests a contribution to virulence by action as a transport chaperone and/or adaptor protein. Journal of molecular biology 383, 603-614 (2008).
15 Sysoeva, T. A., Zepeda-Rivera, M. A., Huppert, L. A. \& Burton, B. M. Dimer recognition and secretion by the ESX secretion system in Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America 111, 7653-7658, doi:10.1073/pnas. 1322200111 (2014).
16 Kneuper, H. et al. Heterogeneity in ess transcriptional organization and variable contribution of the Ess/Type VII protein secretion system to virulence across closely related Staphylocccus aureus strains. Molecular microbiology 93, 928-943, doi:10.1111/mmi. 12707 (2014).
17 Jäger, F., Zoltner, M., Kneuper, H., Hunter, W. N. \& Palmer, T. Membrane interactions and self-association of components of the Ess/Type VII secretion system of Staphylococcus aureus. FEBS letters 590, 349-357, doi:10.1002/1873-3468.12065 (2016).

18 Warne, B. et al. The Ess/Type VII secretion system of Staphylococcus aureus shows unexpected genetic diversity. BMC genomics 17, 222, doi:10.1186/s12864-016-24267 (2016).

19 Burts, M. L., DeDent, A. C. \& Missiakas, D. M. EsaC substrate for the ESAT-6 secretion pathway and its role in persistent infections of Staphylococcus aureus. Molecular microbiology 69, 736-746, doi:DOI 10.1111/j.1365-2958.2008.06324.x (2008).
20 Anderson, M., Aly, K. A., Chen, Y. H. \& Missiakas, D. Secretion of atypical protein substrates by the ESAT-6 secretion system of Staphylococcus aureus. Molecular microbiology 90, 734-743, doi:10.1111/mmi. 12395 (2013).
21 Wang, Y. et al. Role of the ESAT-6 secretion system in virulence of the emerging community-associated Staphylococcus aureus lineage ST398. Scientific reports 6, 25163, doi:10.1038/srep25163 (2016).
22 Korea, C. G. et al. Staphylococcal Esx proteins modulate apoptosis and release of intracellular Staphylococcus aureus during infection in epithelial cells. Infection and immunity 82, 4144-4153, doi:10.1128/IAI.01576-14 (2014).
23 Anderson, M., Chen, Y. H., Butler, E. K. \& Missiakas, D. M. EsaD, a Secretion Factor for the Ess Pathway in Staphylococcus aureus. Journal of bacteriology 193, 15831589, doi:Doi 10.1128/Jb.01096-10 (2011).
24 Tabor, S. \& Richardson, C. C. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proceedings of the National Academy of Sciences of the United States of America 82, 1074-1078 (1985).
25 Butala, M., Zgur-Bertok, D. \& Busby, S. J. The bacterial LexA transcriptional repressor. Cell Mol Life Sci 66, 82-93, doi:10.1007/s00018-008-8378-6 (2009).
26 Hill, T. M., Sharma, B., Valjavec-Gratian, M. \& Smith, J. sfi-independent filamentation in Escherichia coli Is lexA dependent and requires DNA damage for induction. Journal of bacteriology 179, 1931-1939 (1997).
27 Gavrieli, Y., Sherman, Y. \& Ben-Sasson, S. A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. The Journal of cell biology 119, 493-501 (1992).
28 Bos, J., Yakhnina, A. A. \& Gitai, Z. BapE DNA endonuclease induces an apoptotic-like response to DNA damage in Caulobacter. Proceedings of the National Academy of Sciences of the United States of America 109, 18096-18101, doi:10.1073/pnas. 1213332109 (2012).
29 Blower, T. R., Salmond, G. P. \& Luisi, B. F. Balancing at survival's edge: the structure and adaptive benefits of prokaryotic toxin-antitoxin partners. Curr Opin Struct Biol 21, 109-118, doi:10.1016/j.sbi.2010.10.009 (2011).
30 Daleke, M. H. et al. Specific chaperones for the type VII protein secretion pathway. The Journal of biological chemistry 287, 31939-31947, doi:10.1074/jbc.M112.397596 (2012).

31 Ekiert, D. C. \& Cox, J. S. Structure of a PE-PPE-EspG complex from Mycobacterium tuberculosis reveals molecular specificity of ESX protein secretion. Proceedings of the National Academy of Sciences of the United States of America 111, 14758-14763, doi:10.1073/pnas. 1409345111 (2014).
32 Korotkova, N. et al. Structure of the Mycobacterium tuberculosis type VII secretion system chaperone EspG5 in complex with PE25-PPE41 dimer. Molecular microbiology 94, 367-382, doi:10.1111/mmi. 12770 (2014).
33 Zoltner, M. et al. EssC: domain structures inform on the elusive translocation channel in the Type VII secretion system. The Biochemical journal, doi:10.1042/BCJ20160257 (2016).

34 Russell, A. B. et al. Type VI secretion delivers bacteriolytic effectors to target cells. Nature 475, 343-347, doi:10.1038/nature10244 (2011).
35 Murdoch, S. L. et al. The opportunistic pathogen Serratia marcescens utilizes type VI secretion to target bacterial competitors. Journal of bacteriology 193, 6057-6069, doi:10.1128/JB.05671-11 (2011).
36 Souza, D. P. et al. Bacterial killing via a type IV secretion system. Nature communications 6, 6453, doi:10.1038/ncomms7453 (2015).
37 Hood, R. D. et al. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 7, 25-37, doi:10.1016/j.chom.2009.12.007 (2010).

38 Aoki, S. K. et al. Contact-dependent inhibition of growth in Escherichia coli. Science (New York, N.Y 309, 1245-1248, doi:10.1126/science. 1115109 (2005).
39 Zhang, D., de Souza, R. F., Anantharaman, V., Iyer, L. M. \& Aravind, L. Polymorphic toxin systems: Comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Biology direct 7, 18, doi:10.1186/1745-6150-7-18 (2012).
40 Jamet, A. \& Nassif, X. New players in the toxin field: polymorphic toxin systems in bacteria. MBio 6, e00285-00215, doi:10.1128/mBio.00285-15 (2015).
41 Ma, A. T., McAuley, S., Pukatzki, S. \& Mekalanos, J. J. Translocation of a Vibrio cholerae type VI secretion effector requires bacterial endocytosis by host cells. Cell Host Microbe 5, 234-243, doi:10.1016/j.chom.2009.02.005 (2009).
42 Akpe San Roman, S. et al. A heterodimer of EsxA and EsxB is involved in sporulation and is secreted by a type VII secretion system in Streptomyces coelicolor. Microbiology (Reading, England) 156, 1719-1729, doi:10.1099/mic.0.037069-0 (2010).
43 Holberger, L. E., Garza-Sanchez, F., Lamoureux, J., Low, D. A. \& Hayes, C. S. A novel family of toxin/antitoxin proteins in Bacillus species. FEBS letters 586, 132-136, doi:10.1016/j.febslet.2011.12.020 (2012).
44 Housden, N.G. \& Kleanthous, C. Colicin translocation across the Escherichia coli outer membrane. Biochemical Society Transactions 40, 1475-1479, doi: 10.1042/BST20120255 (2012).

45 Willett, J.L., Gucinski, G.C., Fatherree, J.P., Low, D.A. \& Hayes, C.S. Contactdependent growth inhibition toxins exploit multiple independent cell-entry pathways. Proceedings of the National Academy of Sciences of the United States of America 112, 11341-11346 (2015).
46 Monk, I. R., Shah, I. M., Xu, M., Tan, M. W. \& Foster, T. J. Transforming the untransformable: application of direct transformation to manipulate genetically Staphylococcus aureus and Staphylococcus epidermidis. MBio 3, doi:10.1128/mBio.00277-11 (2012).
47 Helle, L. et al. Vectors for improved Tet repressor-dependent gradual gene induction or silencing in Staphylococcus aureus. Microbiology (Reading, England) 157, 33143323, doi:10.1099/mic.0.052548-0 (2011).
48 Karimova, G., Pidoux, J., Ullmann, A. \& Ladant, D. A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proceedings of the National Academy of Sciences of the United States of America 95, 5752-5756 (1998).
49 Sambrook, J. \& Russell, D. W. Molecular cloning : a laboratory manual. 3rd edn, (Cold Spring Harbor Laboratory Press, 2001).
50 Miller, J. H. A short course in bacterial genetics: A laboratory manual and handbook for Escherichia coli and related bacteria. (Cold Spring Harbor Laboratory Press, 1992).
51 Lei, M. G. et al. A single copy integration vector that integrates at an engineered site on the Staphylococcus aureus chromosome. BMC Res Notes 5, 5, doi:10.1186/1756-0500-5-5 (2012).
52 Novick, R. P. Genetic systems in staphylococci. Methods Enzymol 204, 587-636 (1991).

53 Keller, R., de Keyzer, J., Driessen, A.J.M \& Palmer, T. Co-operation between different targeting pathways during integration of a membrane protein. J of Cell Biol 199, 303315 (2012).
54 Miller, M. et al. Staphylococcal PknB as the first prokaryotic representative of the proline-directed kinases. PLoS ONE 5, e9057, doi:10.1371/journal.pone. 0009057 (2010).

Main text figure legends

Fig 1. EsaD is a substrate of the T7SS. a. The ess locus - genes coding for core components of the secretion machinery are in green, secreted components yellow and proteins investigated as part of this study in white. b. and c. EsaD is not required for secretion of EsxA and EsxC - (b) the RN6390 wild-type or isogenic deletion strains, as indicated, were cultured in TSB medium to OD_{600} of 2 or (c) the indicated strains harbouring pRAB11 (empty) or pRAB11-EsxC were cultured in TSB medium to OD_{600} of 0.5 , then supplemented with ATC ($50 \mathrm{ng} / \mathrm{ml}$; to induce plasmid-encoded gene expression) until OD_{600} of 2. Cells were pelleted and the supernatant (sn) was retained as the secreted protein fraction. Samples of the supernatant and whole cells (an equivalent of 200μ l of culture supernatant and $10 \mu \mathrm{l}$ of cells adjusted to OD1) were separated on 12% bis-Tris gels and immunoblotted with the indicated antisera (with TrxA serving as a cytoplasmic control). Note that the samples were run on the same gel but intervening lanes have been spliced out (unspliced version is shown in Fig S9). (d) and (e). EsaD is secreted in an essC-dependent manner. The indicated S. aureus strains harbouring pRAB11 (empty) or pRAB11-EsaD(H528A)-HA were treated as described in (c) except that $250 \mathrm{ng} / \mathrm{ml}$ ATC was used to induce $\operatorname{EsaD}(\mathrm{H} 528 \mathrm{~A})$-HA production and an equivalent of $250 \mu \mathrm{l}$ of supernatant and $10 \mu \mathrm{l}$ of cells adjusted to OD_{600} of 1 were loaded f . Cells of the wild type S. aureus strain, RN6390, harbouring pRAB11 or pRAB11-EsaD(H528A)-HA from (d) were fractionated into cytoplasmic (cyt) and membrane (m) fractions. Samples of each fraction ($20 \mu \mathrm{l}$ aliquot of cyt, and 2 mg of membrane) were separated on 12% bis-Tris gels and immunoblotted using either anti-HA, anti-EssB (membrane protein control) or anti-TrxA (cytoplasmic control) antisera.

Fig 2. EsaDG form a nuclease toxin-antitoxin pair. a. EsaD is toxic to E. coli. E. coli BL21(DE3) harbouring pT7.5 (empty vector), pT7.5-esaD(V584Y) or pT7.5-esaDG was cultured to $\mathrm{OD}_{600} 0.5$, supplemented with 1 mM IPTG (time zero) and OD_{600} measured at 1 hr intervals ($n=3$ biological replicates, error bars are \pm SD). b. -d . EsaG interacts with the
nuclease domain of EsaD. b. Interactions between pT25-EsaG and EsaD variants fused to pT18 assessed by β-galactosidase activity assay in E. coli BTH101. BTH101 harbouring pT25 and pT18 was the negative control. Error bars are \pm SD ($n=3$ biological replicates). Student's t-test gives p values <0.00001 for EsaD/EsaG and EsaD ${ }_{421-614 / E s a G}$ relative to the negative control. Inset shows the same strain/plasmid combinations on MacConkey maltose plates. c. and d. Top two panels: S. aureus RN6390 carrying c. pRAB11 (empty vector), pRAB11-EsaGHA or pRAB11-EsaD(H528A)-His-EsaG-HA, or e. pRAB11 (empty), pRAB11-EsaG-HA, pRAB11-EsaD 421-614 $^{(H 528 A)}$-His or pRAB11-EsaD ${ }_{421-614(H 528 A)}$-His-EsaG-HA was cultured to OD_{600} of 0.5 , then supplemented with ATC $(500 \mathrm{ng} / \mathrm{ml})$. Cells were harvested at $\mathrm{OD}_{600} 3$, lysed and histidine-tagged EsaD purified. Cell lysate (load) and eluted fractions ($20 \mu \mathrm{l}$ of each) were analysed by western blot with anti-His and anti-HA antisera. Bottom two panels show repeat experiments of: c. the EsaD(H528A)-His-EsaG-HA co-purification or d. the EsaD421-614(H528A)-His-EsaG-HA co-purification. Samples of load (10 1), flow through (20رl), final wash $(30 \mu \mathrm{l})$ and elution fraction ($30 \mu \mathrm{l}$) were analysed using the same antisera. Coomassiestained samples of the load and elute fractions are shown in Fig S4. e. E. coli M15[prep4] harbouring pQE70 alone (empty) pQE70-EsaG-EsaG-EsaD ${ }_{421-614-H i s ~ o r ~ p Q E 70-E s a G-E s a G-~}^{\text {- }}$ EsaD ${ }_{421-614(H 528 A)}$-His were cultured to OD_{600} of 0.5 and supplemented with 1 mM IPTG. An aliquot was harvested after 4 hours' induction and resuspended in lysis buffer. His-tagged EsaD nuclease domain (wild type or H528A variant) was purified in the presence of 8 M urea, refolded and eluted as described in Methods. 10 μ l of each sample were separated (12\% bisTris gel) and stained using coomassie instant blue. f. EsaD is a Mg^{2+}-dependent DNase. Plasmid DNA was incubated with purified EsaD ${ }_{421-614 \text {-His, }} \mathrm{EsaD}_{421-614(\mathrm{H} 528 \mathrm{~A}) \text {-His or buffer }}$ alone with either $50 \mathrm{mM} \mathrm{MgCl}_{2}$ or ZnCl_{2}, after which the DNA was analysed by agarose gel electrophoresis.

Fig 3. EsaE is co-secreted with EsaD and together with EsaG they form a ternary complex. a - c. EsaE interacts with EsaD. Interactions between a. pT25-EsaD(H528A) and the indicated fusions to pT18 or c. pT25-EsaE and EsaD ${ }_{1-420}$ or $\mathrm{EsaD}_{421-614}(\mathrm{H} 528 \mathrm{~A})$ fused to pT18 as well as pT18-EsaE and full length EsaD(H528A) fused to pT25 assessed by β galactosidase activity assay in BTH101. BTH101 harbouring pT25 and pT18 was the negative control. Error bars are \pm SD ($n=3$ biological replicates). Student's t-test gives p values < 0.00001 for $\operatorname{EsaD}(H 528 A) / E s a E$, $\operatorname{EsaD}(H 528 A) / E s a G$, EsaD/EsaE, and EsaD $1-420 / E s a E$ relative to the negative control. Inset shows the same strain and plasmid combinations on MacConkey maltose plates. b. Top two panels - S. aureus RN6390 carrying pRAB11 (empty), pRAB11-EsaE-HA or pRAB11-EsaD(H528A)-His-EsaE-HA was cultured to OD_{600} of 0.5 supplemented with $500 \mathrm{ng} / \mathrm{ml}$ ATC and harvested at OD_{600} of 3 . Cells were lysed and histidinetagged EsaD(H528A) was purified. Cell lysate (load) and eluted fractions ($20 \mu \mathrm{l}$ of each) were analysed by western blot with anti-His and anti-HA antisera. Coomassie-stained samples of these fractions are shown in Fig S4. Bottom two panels show repeats of $\operatorname{EsaD}(\mathrm{H} 528 \mathrm{~A})$-His-EsaE-HA co-purification. Samples of load ($10 \mu \mathrm{l}$), flow through ($20 \mu \mathrm{I}$), final wash $(30 \mu \mathrm{I})$ and elution fraction $(30 \mu \mathrm{I})$ were analysed using the same antisera. d and e. EsaE is co-secreted with EsaD. S. aureus RN6390 harbouring pRAB11 (empty) and either d. pRAB11-EsaE-His or e. pRAB11-EsaD-His-EsaE-HA was cultured to OD_{600} of 0.5 supplemented with $250 \mathrm{ng} / \mathrm{ml}$ ATC and harvested at OD_{600} of 3 . Samples of supernatant and cells (equivalent to $250 \mu \mathrm{l}$ supernatant and $10 \mu \mathrm{l}$ cells adjusted to OD_{600} of 1) were separated on 12% bis-Tris gels and immunoblotted with the indicated antisera. f. EsaE, EsaD and EsaG form a ternary complex. E. coli M15[pRep4] carrying pQE70 (empty) or pQE70- EsaE-HA-EsaD(H528A)-Myc-EsaGHis was cultured to OD_{600} of 0.5 , supplemented with 2 mM IPTG for 4 hours, harvested and lysed. HA-tagged EsaE was purified and $10 \mu \mathrm{l}, 25 \mu$ l and 35μ l of the elution fractions were analysed by western blot with anti-HA, anti-His and anti-myc antibodies, respectively. Coomassie-stained samples of these fractions are shown in Fig S10. g. Samples of load $(10 \mu \mathrm{l})$, flow through $(20 \mu \mathrm{l})$, final wash $(30 \mu \mathrm{l})$ and elution fraction $(30 \mu \mathrm{l})$ from the EsaE-HA-

EsaD(H528A)-Myc-EsaG-His co-purification experiment shown in f. were analysed by western blotting with the same antisera.

Fig 4. EsaE is a membrane-associated protein that interacts with multimeric EssC. a. A proportion of EsaE is bound to the membrane. The S. aureus wild type strain, RN6390, harbouring pRAB11 (empty) or pRAB11-EsaE-His was cultured in TSB medium to OD_{600} of 0.5 , supplemented with ATC $(250 \mathrm{ng} / \mathrm{ml})$ and harvested at OD_{600} of 2 . Cells were fractionated into cell wall (cw), cytoplasmic (cyt) and membrane (m) fractions. An aliquot of the membrane fraction was washed with $0.2 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~m}+$) Samples of each fraction ($20 \mu \mathrm{l}$ aliquot of cw and cyt; 2 mg of membrane) were separated on 12% bis-Tris gels and immunoblotted using either anti-His or anti-sortase A (SrtA) antisera. b and c. EsaE crosslinks to a multimeric form of EssC. b. Whole cells of the S. aureus wild type (RN6390), or c. the wild type and the isogenic essC deletion strain, as indicated, harbouring pRAB11 (empty) or pRAB11-EsaE-His were cultured in TSB medium to OD_{600} of 0.5 supplemented with ATC $(250 \mathrm{ng} / \mathrm{ml})$ and at OD_{600} of 2, cells were incubated with paraformaldehyde (PFA) as described under Methods. Following quenching, cells were lysed and membrane fractions prepared, and membrane protein (1mg for samples from the wild type strain, 10 mg for samples from the ess C strain) loaded on b. a bis-Tris gel containing 12% acrylamide or c. SDS-gels containing 5% acrylamide (bottom panel in part C showing EsaE-His monomer is 12% bis-Tris gel) and analysed by western blot with the indicated antisera. d. Model for EsaD synthesis and secretion. Following synthesis of EsaD (shown in green), 1 EsaE binds to the N terminal region of the protein and 2 EsaG binds to the nuclease domain to prevent activity against the DNA of the producing cell. $\mathbf{3}$ the ternary complex is targeted to the secretion machinery facilitated by the interaction of EsaE with multimeric EssC. 4 EsaG is released from EsaD during the transport step and 5 the EsaDEsaE complex is secreted out of the cell via the T7SS.

Fig 5. Secreted EsaD kills sensitive strains of S. aureus. a. EsaG homologues are encoded in S. aureus strains that lack esaD. DUF600-family proteins encoded at the ess loci in S. aureus strains NCTC8325 (parental strain of RN6390), MRSA252, ST398 and EMRSA15. Genes encoding DUF600 proteins are shaded in purple, essC is shaded green and esaD grey. The two genes shaded in brown are highly conserved across all strains and define the 3 ' boundary of the ess locus ${ }^{18}$. b. and c. Interactions between pT25-EsaD(H528A) and DUF600 proteins; b. from strains ST398, MRSA252 and EMRSA15, and c. from strain NCTC8325. In each case the DUF600 reading frame was fused to pT 18 and interaction with full length EsaD fused to pT25 assessed by β-galactosidase activity assay in E. coli BTH101. BTH101 harbouring pT25 and pT18 was the negative control. Error bars are \pm SD ($n=3$ biological replicates). Student's t-test gives p values <0.00001 relative to the negative control. Insets shows the same strain and plasmid combinations on MacConkey maltose plates. d. In vitro growth competition assays between the indicated attacker and prey strains in liquid medium. In each case the attacker strain (COL or COLDess) overproduced EsaD-HA or EsaD(H528A)HA along with EsaG-His as described in Methods, and was incubated with either RN6390, RN6390 000268 -00278 or RN6390 pEsaG-His as prey, as indicated. To the right, the three prey strains incubated with COL pEsaD-HA-EsaG-His as attacker are replotted next to each other to allow a more direct comparison. In all experiments five biological replicates of each attacking strain was used against a single culture of prey. Bars represent the average value of c.f.u. of prey bacteria at the end of the experiment. Asterisks indicate significant differences in c.f.u. * p value <0.05; ** p value <0.005, ${ }^{* * *} p$ value <0.0005. Comparison of RN6390 with RN6390 000268 -00278 survival when COL pEsaD-HA-EsaG-His was used as attacker was not significant ($p=0.069$). Error bars are \pm SD ($n=5$ biological replicates).

a

d

The Ess/Type VII secretion system of Staphylococcus

 aureus secretes a nuclease toxin that targets competitor bacteria
Supplementary information

Supplementary Figures 1-16

Supplementary Tables 1-3
Supplementary References

Supplementary Figure 1. Localization and predicted topologies of Ess components in S. aureus strain RN6390. Essential components of the secretion machinery are shown in green and known secreted substrates in yellow. FHA - forkhead associated domain. ATP - P-loop ATP-binding domain.

Supplementary Figure 2. EsaD has a predicted nuclease domain at its C-terminus. Alignment of S. aureus EsaD with Orthologs identified using BlastP ${ }^{10}$. Multiple sequence alignment was generated using Clustal Omega ${ }^{11}$ with default settings. The Streptococcus pyogenes Spd1 protein, for which nuclease activity has been described ${ }^{12}$, was included as a reference for the Endonuclease_NS_2 family (PFAM 13930). The position of the catalytically active Histidine 121 in Spd1 (H528 for EsaD) is marked with an asterisk. The position of EsaD V584 that was substituted to a tyrosine in this work is indicated by a red arrow. Abbreviations: Afl, Anoxybacillus flavithermus; Bce, Bacillus cereus; Bcl, B. clausii; Bha, B. halodurans; Ble, B. lentocellum; Bli, B. licheniformis; Bpu, B. pumilus; Bsu, B. subtilis; Cle, Clostridium lentocellum; Cpa, Cohnella panacarvi; Sau, Staphylococcus aureus; Sepi, S. epidermidis; Sha, Sediminibacillus halophilus; Spy, Streptococcus pyogenes; Strep, Streptococcus sp.

C

Supplementary Figure 3. Microscopy analysis of E. coli cells producing EsaD. E. coli strain BL21(DE3) harbouring plasmids pT7.5, pT 7.5 esaD (V584Y) or p 77.5 esaDG was cultured in LB at $37^{\circ} \mathrm{C}$ to $\mathrm{OD}_{600} 0.5$, an aliquot of cells was removed and the remainder of the sample was supplemented with 1 mM IPTG for a further three hours. a. Cells were analysed by light microscopy and b. The length of the cells was measured ($n=300$) and the mean length ($+/-$ one standard deviation) is shown. $p<0.001$ comparing length of cells harbouring $\mathrm{pT7.5esaD}(\mathrm{~V} 584 \mathrm{Y})$ in the presence and the absence of IPTG induction. or c. Cells were treated with the deadend fluorometric TUNEL system kit (Promega) and analysed by fluorescence light microscopy with a FITC filter. d. EsaD causes DNA damage. BL21(DE3) harbouring the indicated plasmids were cultured as in a., and cells were harvested prior to IPTG supplementation (0 mM IPTG) and after three hour treatment with 1 mM IPTG, deoxynucleotidyl transferase dUTP nick end labelled and fluorescence-positive cells quantified by flow cytometry. The percentage of total cells that are scored as fluorescence positive is given in the bottom left-hand corner of each panel.

Supplementary Figure 4. Analysis of EsaD(H528A)-His-EsaG-HA, EsaD(H528A)-His-EsaEHA and $\mathrm{EsaD}_{421-614}(\mathrm{H} 528 \mathrm{~A})$-His-EsaG-HA co-purification by coomassie staining. The S. aureus wild type strain, RN6390, carrying EsaD(H528A)-His-EsaG-HA, pRAB11-EsaD(H528A)-His-EsaE-HA or pRAB11-EsaD(H528A)(421-614)-His-EsaG-HA was cultured in TSB medium to OD_{600} of 0.5 supplemented with ATC $(500 \mathrm{ng} / \mathrm{ml})$ and harvested at OD_{600} of 3 . Cells were lysed and histidine-tagged EsaD(H528A) was purified using nickel affinity beads. The cell lysate (load) and eluted fractions ($20 \mu \mathrm{l}$ aliquots of each) were separated by SDS PAGE (12\%) and stained with coomassie instant blue. The far left hand lane is the molecular weight marker used in the experiment. Note that these correspond to the same fractions used for western blotting in Fig 2c, Fig 2d and Fig 3b.

Supplementary Figure 5. EsaD is a $\mathbf{M g}^{\mathbf{2 +}}$-dependent DNase. 200ng of S. aureus gDNA or 400ng of a linear DNA PCR product were incubated with $0.4 \mu \mathrm{~g}$ purified $\mathrm{EsaD}_{421-614}$-His, $\mathrm{EsaD}_{421-614}(\mathrm{H} 528 \mathrm{~A})$-His or an equivalent volume of elution buffer, each supplemented with $50 \mathrm{mM} \mathrm{MgCl}{ }_{2}$ in a final volume of $20 \mu \mathrm{l}$ at $37{ }^{\circ} \mathrm{C}$ for 20 mins after which the DNA was analysed by 1% agarose gel electrophoresis.

Supplementary Figure 6. EsaG is a cytoplasmic protein. The S. aureus wild type strain, RN6390, harbouring pRAB11 (empty) or pRAB11-EsaG-His was cultured in TSB medium to OD_{600} of 0.5 , supplemented with ATC $(250 \mathrm{ng} / \mathrm{ml})$ and harvested at OD_{600} of 2 . A sample of the supernatant (sn) was retained as the secreted protein fraction and cells were fractionated into cell wall (cw), cytoplasmic (cyt) and membrane (m) fractions. Samples of each fraction ($20 \mu \mathrm{l}$ aliquot of sn, cw, and cyt, 2 mg of membrane) were separated on 12% bis-Tris gels and immunoblotted using either anti-His, anti-EssB (membrane protein control), anti-EsxA or antiTrxA (cytoplasmic control) antisera.

Supplementary Figure 7. EsaG is not co-secreted with EsaD. The S. aureus wild type strain, RN6390, harbouring pRAB11 (empty) or pRAB11-EsaD(H528A)-HA-EsaG-His were cultured in TSB medium to OD_{600} of 0.5 , supplemented with ATC $(250 \mathrm{ng} / \mathrm{ml})$ and harvested at OD_{600} of 2 . Samples of the supernatant (sn) and cellular (c) fractions (an equivalent of 250μ l of supernatant and $10 \mu \mathrm{l}$ of cells adjusted to OD_{600} of 1) were separated on 12% bis-Tris gels and immunoblotted using the indicated antisera.

Supplementary Figure 8. EsaD-HA is not detected in the supernatant when esaE or esaG are deleted. The indicated S. aureus strains harbouring pRAB11 (empty) or pRAB11-EsaD(H528A)-HA were cultured in TSB medium until to OD_{600} of 0.5 , supplemented with ATC ($250 \mathrm{ng} / \mathrm{ml}$) and harvested at OD_{600} of 2 . Samples of the supernatant (sn) and cellular (c) fractions (an equivalent of $250 \mu \mathrm{l}$ of supernatant and $10 \mu \mathrm{l}$ of cells adjusted to OD_{600} of 1) were separated on 12% bis-Tris gels and immunoblotted using the indicated antisera.

Supplementary Figure 9. EsaD and EsaG proteins are not required for the secretion of EsxA and EsxC. a. The RN6390 wild-type or isogenic deletion strains, as indicated, were cultured in TSB medium or b. The indicated strains harbouring pRAB11 (empty) or pRAB11-EsxC were cultured in TSB medium until an OD_{600} of 0.5 and supplemented with ATC $(50 \mathrm{ng} / \mathrm{ml})$. a. and b . When cultures reached OD_{600} of 2 , cells were spun down and the supernatant (sn) was retained as the secreted protein fraction, while the pellet was retained as the cellular fraction. Samples of the supernatant and cellular fractions (an equivalent of $200 \mu \mathrm{l}$ of supernatant and $10 \mu \mathrm{l}$ of cells adjusted to OD_{600} of 1) were separated on 12% bis-Tris gels and immunoblotted with the indicated antisera.

Supplementary Figure 10. EsaE and EsaG do not interact with each other. a. Bacterial two-hybrid analysis of strain BTH101 harbouring pT25 and pT18 (negative), pT25-EsaE and pT18-EsaG, or pT25EsaG and pT18-EsaD(H528A) assessed by β-galactosidase activity assay. Error bars represent the standard deviation ($n=3$ biological replicates). The inset shows the same strain and plasmid combinations scored on MacConkey maltose plates. b. E. coli strain M15[pRep4] carrying pQE70 (empty) or pQE70-EsaE-HA-EsaG-His was cultured in LB medium to OD_{600} of 0.5 , and then supplemented with 2 mM IPTG for 4 hours, after which cells were harvested and lysed. His-tagged EsaG was purified using Ni-affinity beads, and in each case the elution fractions (10 $\mu \mathrm{l}$ aliquots of each) were separated by SDS PAGE (12\%) and analysed by western blot with anti-HA or anti-His antibodies.

Supplementary Figure 11. Analysis of EsaE-HA-EsaD(H528A)-Myc-EsaG-His co-purification by coomassie staining. E. coli M15[pRep4] carrying pQE70 (empty) or pQE70- EsaE-HA-EsaD(H528A)-Myc-EsaG-His was cultured, lysed and EsaE-HA was purified using anti-HA antibody-coupled agarose beads as described in Methods and in the legend to Fig 3. The same samples ($10 \mu \mathrm{l}$ aliquots of each) as those analysed in Fig 3 f were stained using coomassie instant blue following SDS PAGE (12% bis-Tris gel). The far left hand lane is the molecular weight marker used in the experiment and the lanes between the load and elute fractions were left empty.

Supplementary Figure 12. EsaD, EsaE and EsaG form a ternary complex. E. coli strain M15[pRep4] carrying pQE70 (empty) or pQE70-EsaE-HA-EsaD(H528A)-Myc-EsaG-His was cultured in LB medium to OD_{600} of 0.5 , and then supplemented with 2 mM IPTG for 4 hours, after which cells were harvested and lysed. His-tagged EsaG was purified using Ni-affinity beads, and $20 \mu \mathrm{l}$ aliquots the elution fractions (of each) were separated by SDS PAGE (12\%) and analysed by western blot with the indicated antisera. Non-specific bands that cross-react with the anti-Myc antibody are indicated with asterisks.

Supplementary Figure 13. Sequence analysis of EsaD proteins shows variability within the C-terminal nuclease domain. EsaD protein sequences from S. aureus subsp. aureus strains were extracted from the KEGG Genome database (www.genome.jp/kegg/genome.html) and aligned using Clustal Omega on standard settings. Redundant sequences (100% identity) were omitted for clarity.

Supplementary Figure 14. Genes encoding additional DUF600 domain proteins are not co-transcribed with esaG and are not required for EsxA and EsxC secretion. a. Genetic organisation at the 3' end of the ess locus in S. aureus strain NCTC8325, with genes encoding DUF600 proteins are shaded in purple. The regions amplified by primer pairs used for RT-PCR analysis (listed in Table S3) are indicated. b. RT-PCR analysis of mRNA isolated from S. aureus strain RN6390, using primer pairs. The expected sizes for PCR products 1-3 are 573, 1143 and 684 bp, respectively. c. The RN6390 wild-type or isogenic deletion strains, as indicated, were cultured in TSB medium to OD600 of 2, cells (c) were harvested and the supernatant (sn) was retained as the secreted protein fraction. Samples of the supernatant and cellular fractions (an equivalent of 250μ l of supernatant and $10 \mu \mathrm{l}$ of cells adjusted to OD_{600} of 1) were separated on 12% bis-Tris gels and immunoblotted using either anti-EsxA, anti-EsxC or anti-TrxA antisera.

Supplementary Figure 15. Uncropped images of Figs. 1-4 and Supplementary Figs. 5-10, 12 and 14.

Uncropped Figure 1b

Uncropped Figure 1c

Uncropped Figure 1d

Uncropped Figure 1e

Uncropped Figure 1 f

Uncropped Figure 2c

esafuride
nakel

Uncropped Figure 2d

Uncropped Figure 2e

Uncropped Figure 2g

Uncropped Figure 3b

Uncropped Figure 3d

Uncropped Figure 3e

1

Uncropped Figure 3f

Uncropped Figure 3g

Uncropped Figure 4a

Uncropped Figure 4b

Uncropped Figure 4c

Uncropped Supplementary Figure 5

Uncropped Supplementary Figure 6

As a shorter exposure

Uncropped Supplementary Figure 7

Uncropped Supplementary Figure 8

Uncropped Supplementary Figure 9a

Uncropped Supplementary Figure 9b

Uncropped Supplementary Figure 10

Uncropped Supplementary Figure 12

Uncropped Supplementary Figure 14b

Uncropped Supplementary Figure 14c

Supplementary Figure 16. Synthetic gene sequences used in this study.

Sequence of insert in pQE70 EsaE-HA-EsaD-Myc-EsaG-His

GGATCCATGAAAGACGTTAAACGTATCGACTACTTCTCTTACGAAGAACTGACCATCCT GGGTGGTTCTAAACTGCCGCTGGTTAACTTCGAACTGTTCGACCCGTCTAACTTCGAAG AAGCGAAAGCGGCGCTGATCGAAAAAGAACTGGTTACCGAAAACGACAAACTGACCGA CGCGGGTTTCAAAGTTGCGACCCTGGTTCGTGAATACATCTCTGCGATCGTTAACATCC GTATCAACGACATGTACTTCGCGCCGTTCTCTTACGAAAAAGACGAATACATCCTGCTG TCTCGTTTCAAAAACAACGGTTTCCAGATCCGTATCATCAACAAAGACATCGCGTGGTG GTCTATCGTTCAGTCTTACCCGCTGCTGATGCGTCAGGAAAAATCTAACGACTGGGACT TCAAACAGATCGACGACGAAACCCTGGAAAACCTGAACAACGAATCTATCGACACCATC GGTCGTGTTCTGGAAATCGAAATCTACAACCACCAGGGTGACCCGCAGCAGTCTCTGT ACAACATCTACGAACAGAACGACCTGCTGTTCATCCGTTACCCGCTGAAAGACAAAGTT CTGAACGTTCACATCGGTGTTATCAACACCTTCATCCGTGAACTGTTCGGTTTCGACAC CGACGAAAACCACATCAACAAAGCGGAAGAATATCCATATGATGTTCCAGATTATGCAT AATGGATCCATTAAAGAGGAGAAATTAACCATGACCAAAGACATCGAATACCTGACCGC GGACTACGACAACGAAAAATCTTCTATCCAGTCTGTTATCGACGCGATCGAAGGTCAGG ACTTCCTGGACGTTGACACCACCATGGACGACGCGGTTTCTGACGTTTCTTCTCTGGAC GAAGACGGTGCGATCTCTCTGACCTCTTCTGTTGTTGGTCCGCAGGGTTCTAAACTGAT GgGTTACTACCAGAACGAACTGTACGACTACGCGTCTCAGCTGGACTCTAAAATGAAAG AAATCATCGACACCCCGTTCATCGAAGACATCGACAAAGCGTTCAAAGGTATCACCAAC GTTAAACTGGAAAACATCCTGATCAAAAACGGTGGTGGTCACGGTCGTGACACCTACG GTGCGTCTGGTAAAATCGCGAAAGGTGACGCGAAAAAATCTGACTCTGACGTTTACTCT ATCGACGAAATCCTGAAATCTGACCAGGAATTCGTTAAAGTTATCGACCAGCACTACAA AGAAATGAAAAAAGAAGACAAAAAACTGTCTAAATCTGACTTCGAAAAAATGATGACCCA GGGTGCGTCTTGCGACTACATGACCGTTGCGGAAGCGGAAGAACTGGAAGAACAGAAA AAAAAAGAAGAAGCGATCGAAATCGCGGCGCTGGCGGGTATGGTTGTTCTGTCTTGCA TCAACCCGGTTGCGGGTGCGGTTGCGATCGGTGCGTACTCTGCGTACTCTGCGGCGA ACGCGGCGACCGGTAAAAACATCGTTACCGGTCGTAAACTGTCTAAAGAAGAACGTAT CATGGAAGGTCTGTCTCTGATCCCGCTGCCGGGTATGGGTTTCCTGAAAGGTGCGGGT AAATCTCTGATGAAACTGGGTTTCAAAGGTGGTGAAAAATTCGCGGTTAAAACCGGTCT GCAGAAAACCATGCAGCAGGCGGTTTCTCGTATCTCTCCGAAAATGGGTATGATGAAAA ACTCTGTTCTGAACCAGTCTCGTAACTTCGCGCAGAACACCCACGTTGGTCAGATGCTG TCTAACATGCGTGGTCAGGCGACCCACACCGTTCAGCAGTCTCGTAACTGGATCGGTC AGCAGGCGCAGAACGTTAAACGTATCGTTAACAACGGTCTGGACAAAGAAATCGCGCA CCCGTTCAAACAGCAGCTGGCGCCGGCGGGTATGGGTGGTATCAAATTCGCGGAAAC CACCACCCTGCGTAACATGGGTCAGAACATCAAACGTGCGGTTACCCCGCAGAACCAC GTTACCCACGGTCCGAAAGACTCTATGGTTCGTTCTGAAGGTAAACACTCTATCTCTTC TCACGAAATGAACTCTTCTAAATACGTTGAATCTCCGAACTACACCAAAGTTGAATTCGG TGAACACTACGCGCGTCTGCGTCCGAAAAAACTGAAAGCGAACATCGAATACACCACC CCGACCGGTCACATCTACCGTACCGACCACAAAGGTCGTATCAAAGAAGTTTACGTTGA CAACCTGTCTCTGAAAGACGGTGACCGTAACTCTCACGCGCAGCGTACCGTTGGTGGT GAAGACCGTCTGCCGGACGACGACGGTGGTCACCTGATCGCGCGTATGTTCGGTGGT TCTAAAGACATCGACAACCTGGTTGCGCAGTCTAAATTCATCAACCGTCCGTTCAAAGA AAAAGGTCACTGGTACAACCTGGAAAAAGAATGGCAGGAATTCCTGAACTCTGGTAAAG AAGTTAAAAACATCAAAATGGAAGTTAAATACTCTGGTAACTCTCAGCGTCCGACCATCT TCAAAGTTGAATACGAAATCAACGGTGAACGTAACATCCGTCGTATCCTGAACAAAGAA CAAAAACTTATTTCTGAAGAAGACCTGTAATATTAAAGAGGAGAAATTAACCATGACCTT CGAAGAAAAACTGTCTAAAATCTACAACGAAATCGCGAACGAAATCTCTTCTATGATCCC gGttgaitgagaianagtttacaccatgacgtacatcgackacggtgatgatgaiagt TTCTTCAACTACACCAAACCGGGTTCTGACGACCTGAACTACTACACCAACATCCCGAA AGAATACAACATCTCTGTTCAGGTTTTCGACGACCTGTGGATGGACCTGTACGACCTGT TCGAAGAACTGCGTGACCTGTTCAAAGAAGAAGACCTGGAACCGTGGACCTCTTGCGA ATTCGACTTCACCCGTGAAGGTGAACTGAAAGTTTCTTTCGACTACATCGACTGGATCA

ACTCTGAATTCGGTCAGATCGGTCGTCAGAACTACTACAAATACCGTAAATTCGGTATC CTGCCGGAAACCGAATACGAAATCAACAAAGTTAAAGAAATCGAACAGTACATCAAAGA ACTGGAAAGATCT

Restriction sites are underlined, genes (esaE, esaD and esaG) are shown in italics and added tags (HA, Myc) are double underlined. Note that the C-terminal His-tag on EsaG is supplied by the vector.

Synthetic pT25-DUF600 constructs

Abstract

pT25-00274 GGATCCCACTTTCGAAGAAAAATTAAGTGAAATGTATAGCGAGATTGCGAATAAGATTA GCAGCATGATACCGGTAGAGTGGGAGCAAGTATATGCAATGGCATATGTAACTGATCAA GCTGGAGAAGTCATCTTTAATTATACTAAACCAGATAGTGATGAATTAAATTATTATTCAG ACATACCTAAAGATTGCAATGTCTCAAAAGATATTTTTAAGAATTCATGGTTTAAAGTTTA TCGAATGTTTGATGAGTTAAGAGAAACTTTTAAAGAAGAAGGGCTTGAACCATGGACAT CATGCGAATTTGACTTTACAAGAGATGGCAAATTGAATGTATCTTTTGATTATATAGATT GGATAAATACAGAGTTTGATCAATTGGGCCGTCAAAATTATTATATGTACAAAAAATTTG GGGTTATACCAGAAATGGAATATGAAATGGAAGAAGTTAAAGAAATCGAACAATATATTA AAGAGCAAGAAGAAGCTGAACAAGGTACC pT25-00275 GGATCCCACTTTCGAAGAGAAAATAAGCAAATTATATAATGAGATTGCGAATGAGATTAG CAGTATGATACCGGTAGAGTGGGAAAAAGTATATACAATGGCTTATATAGATGATGGAG GAGGTGAAGTATTCTTTAATTATACTAAACCAGGTAGTGATGACTTGAATTATTACACCG ATATACCTAAGGAGTATAACATCTCTGTGCAAGTATTTGATGATTTATGGATGGATTTAT ATGATTTGTTTGAGGAATTAAGAGATTTATTTAAAGAAGAAGGGCTTGAACCATGGACAT CATGTGAATTTGACTTTACAAGCGAAGGTAAATTAAAAGTTTCATTTGATTATATAGATTG GATAAATACAGAGTTTGATCAATTAGGCCGTGAAAATTATTATATGTATAAAAAATTTGG GGTTTTACCAGAAATGGAATATGAAATGGAAGAAATTAAAGAAATCGATCAATATATTAA AGAGCAAGATGAAGCTGAAATAGGTACC

pT25-00276
GGATCCCACTTTCGAAGAGAAAATAAGCAAATTATATAATGAGATTGCGAATGAGATTAG CAGTATGATACCGGTAGAGTGGGAAAAAGTATATACAATGGCTTATATAGATGATGGAG GAGGTGAAGTATTCTTTAATTATACTAAACCAGGAAGTGAAGATTTGAATTATTATACCG ATATACCTAAGGAGTATAATGTTTCTGTGCAAGTATTTGATGATTTATGGATGGATTTATA TGATTTGTTTAAGAATTTAAGAAATTTATTTAAAGAAGAAGGACTTGAACCATGGACATC ATGTGAATTTGACTTTACAAGAGACGGCAAATTGAATGTTTCATTTGATTATATTGATTG GGCGAATTCAGAGTTTGGACAAATGGGAAGAGAACATTATTACATGTATAAAAAATTTG GAATTTGGCCTGAAAAAGAATATGCCATAAATTGGGTAAAAAAAATAAAAGATTATGTTA AAGAGCAAGATGAAGCTGAACTAGGTACC
pT25-00277
GGATCCCACTTTCGAAGAAAAACTAAGTCAAATGTACAATGAAATTGCAAATGAAATCAG TGGAATGATACCAGTTGAATGGGAAAATATATATACAATTGCCTATGTAACTGATCAAGG TGGAGAGGTCATTTTTAATTATACTAAACCAGGTAGCGATGAATTGAATTATTACACATA TATCCCTAGAGAGTATAATGTCTCTGAAAAAGTATTTTATGATTT
GTGGACGGATTTATATAGATTGTTTAAGAAGTTAAGAGAAACTTTTAAAGAAGAAGGGCT TGAACCATGGACATCAAGTGAATTTGACTTTACAAGCGAAGGTAAATTAAAAGTTTCATT TGATTATATTGATTGGATAAATACAGAGTTTGATCAATTAGGCCGTGAAAACTATTATAT GTATAAAAAGTTTGGTGTTTTACCAGAAATGGAATACGAAATGGAAGAAGTTAAAGAAAT CGAGCAATATATTAAAGAGCAAGATGAAGCTGAACTAGGTACC

pT25-00278
 GGATCCCACTTTCGAAGAAAAGCTAAGTCAAATGTACAATGAAATTGCAAATGAAATCA GTGGAATGATACCAGTAGAATGGGAAAAAGTATATACAATTGCCTACGTAGATGATGAA GGTGGAGAGGTTGTTTTTAATTATACTAAACCAGGAAGTGAAGATTTGAATTATTATTCA GATATTCCTAAAGATTGCAATGTCTCAAAAGATATTTTTAAGAATTCATGGTTTAAAGTTT ATCGAATGTTTGATGAGTTAAGAGAAACTTTTAAAAAAGAAGATTTAGAACCGTGGACAT CATGTGAATTTGACTTTACAAGAAAGGGAAATTTAAAAGTATCATTTGATTATATAGATTG GATTAAATTAGGTTTTGGCCCATCAGGAAAGGAAAACTACTATATGTACAAAAAATTTGG TATTTTACCAGATATGGAATATGAAATGGAAGAAATTCGAGCAGTAGAGAAGTATGTTAA AGAGCAAGAGGGTACC

Abstract

pT25-SAPIG0310 GGATCCCACTTTCGAAGAAAAACTAAGTCAAATGTACAACGAGATTGCGAATGAGATCA ATGGAATGATACCAGTAGACTGGGAAAAGGTATATGCAATGGCATATATAGATGATGGA GGAGGAGAAGTGTTCTACTATTACACAGAACCTGGAAGGAATGAATTATACTACTATAC TAGTGTATTAAATAAATATGATATATCAGAATCAGAATTTATGGACTCAGAGTATGAGTT GTATAAACAATTTCAAAAGTTAAGAAATATATTTAAAGAAGAAGGACATGAACCATGGAC ATCATGCGAATTTGATTTTACAAGAGAAGGTAAATTAAAAGTTTCATTTGATTATATAGAT TGGATAAATTCAGAATTTGGTCAAATAGGTCGACAAAATTACTATAAGTATAGAAAATTT GGAATTTTACCAGAAACGGAATATGAAATTAATAAAGTTAAAGAAATCGAGCAATATGTT AAAGAACAAGAAGAAGCTGAAATAGGTACC

pT25-SAPIG0311
GGATCCCAATTTCGAAGAAAAACTAAGTCAAAAGTACAACGAGATTGCGAATAAAATTA GTAGCATGATACCAGTAGAGTGGGAAAAGGTATATGCAATGGCTTATATAAATGAAAGA AATGGAGAAGTTTTCTACAATTATACTGAGCCAAGCAGTGATGAATTGTTTTACTATACG AGCGTGTTAAATAAATATAATATACCAAGATCAGAATTTATGGACTCAGTATATGAATTAT ATAAGCAATTTGATAATTTAAGAGAATTGTTTATAGAAGAAGGACTCGAGCCATGGACAT CATGCGAATTTGACTTTACAAGAGAGGGTAAATTAAACGTATCTTTTGATTATATTGATT GGACTAAATTAGAATTTGGTCAAATAGCAAAAGAAAATTATTATATGTATAAAAAATTTGG AGTTATGCCAGAAATGAAATATGAAATTAATAAAGTTAAAGAAGTAGAGAAGTGTATTAA AGAGCAAGAAGAAGGTACC
pT25-SAPIG0314
GGATCCCACTTTCGAAGAGAAATTAAGTGAAATGTATAACGAGATTGCGAATGAGATCA GTGGGATGATACCAGTAGAATGGGAGCAAGTATTTACAATAGCCTATGTAACTGATCAA GCTGGAGAAGTCATTTTTAATTATACTAAACTGGTAGTGATGAATGGTACC
pT25-SAR0293
GGATCCCACTTTCGAAGAGAAGTTAAGTCAAATGTACAACGAGATTGCGAATGAGATCA GTGGGATGATACCGATAGAGTGGGAAAAAGTATATACAATGGCTTATATAGATGATGAA GGTGGAGAAGTGTTCTACTATTACACAGAACCTGGAAGCAATGAATTATACTACTATACT AGTGTATTAAATAAATATGATATATCGGAATCAGAATTTATGGACTCAGCGTATGAGTTG TATAAACAATTTCAAAATTTAAGAAATATATTTAAAGAAGAAGGATATGAACCATGGACAT CATGCGAATTTGATTTTACAAAAGAAGGTGAATTAAAAGTTTCATTTGATTATATAGATTG GATCAATACAGAGTTTGATCAATTGGGCCGTCAAAATTATTATATGTACAAAAAATTTGG GGTTATACCAGAAATGGAATATGAAATGGAAGAAGTTAAAGAAATCGAGCAATATATTAA AGAGCAAGATGAAGCTGAACAAGGTACC
pT25-SAR0294
GGATCCCACTTTCGAAGAAAAATTAAGTGAAATGTACAATGAAATTGCGAATAAAATTAG TAGCATGATACCAGTAGAATGGGAAAAGGTATATACAATGGCTTATATAGATGATGGAG GAGGTGAAGTATTCTTTAATTATACTAAAATAAACAGCGATGAATTGAATTATTACACCG ATATACCTAAGGAGTATAACATTTCTGTGCAAGTATTTGATGATTTATGGATGGATTTATA TGATTTGTTTGAGGAATTAAGAAATTTATTTAAAGAAGAAGGACATGAACCATGGACATC

ATGCGAATTTGATTTTACAAGAGACGGCAAATTGAATGTTTCATTTGATTATATTGATTG GGCGAATTCAGAGTTTGGGCCAATGGGAAGAGAACATTATTATATGTATAAAAAATTTG GAATTTGGCCTGAAAAAGAATATGCCATAAATTGGGTTGAAAAAATAAAAGATTATGTTA AAGAGCAAGAAGAAGCTGAACTAGGTACC
 pT25-SAR0295
 GGATCCCACTTTCGAAGAAAAACTAAGTGAAATGTACAACAAGATTGCAAATGAGATTG TTGGCATGATACCTGTAGAATGGGAAAAGGTATATACAATAGCCTATGTAAATGATAGA GGTGGAGAGGTCGTTTTTAATTATACTAAACCAGGTAGCGATGAATTGAATTATTACATG AATATATCTAGAGATTATAATGTTTCGGAAGAAATATTTGATGATTTATGGATGGAACTTT ATAGATCATTTAAAAAATTAAGAAATATATTTAAAGAAGAAGGACATGAACCATGGACAT CATGCGAATTTGATTTTACAAACGAAGGTAAATTAAAAGTTTCATTTGATTATATTGATTG AAAGAATACAGAATTTGATCAATTGAGTCTTGAAAATTATTATATGTACAAAAAATTTGGG GTTATACCAGAAATGGAAGAAATTAAAGAAATCGAGCAATATATTAAAGAGCAAGAAGAA GCTGAACTAGGTACC
 pT25-SAR0297
 GGATCCCACTTTCGAAGAAAAACAAAGTGAAATGTACAATAAAATTGCAAATGAGATTAG TGGGATGATACCAGTAGAGTGGGAAAAGGTATATACAATTGCCTACCTAGATGATGAAG GTGGAGAAGTCGTTTTTAATTATACTAAACCAGGTAGCGATGAATTGAATTATTACACGG ATATATCTAGAGATTATAATATTTCAGAAAAAATATTTGATGATTTATGGATGAATCTTTAT TACTTGTTTATGAATTTAAGGGATTTATTTAAATAAGAAGATTTAGAACCATGGACATCAT GTGAATTTGACTTTACAAGCGAAGGTGATTTAAACGTATCTTTTGATTATATAGATTGGA TTAAATTAGGTTTTGGCCCATCAGGAAAGGAAAACTACTATATGTATAAAAAGTTTGGTG TTTTACCAGAAATGGAATATGAAATGGAAGAAATTCGAGCAGTAGAGAAGTATGTTAAA GAGCAAGAGGGTACC

> | pT25-SAEMRSA15_02570 |
| :--- |
| GGATCCCACTTTCGAAGAAAAATTAAGTGAAATGTACAATGAAATTGCGAATGAGATTAG |
| CAGTATGATACCAGTAGAGTGGGAAAAGGTATATGCAATTGCCTATGTAGATGATCAAG |
| GTGGAGAGGTCGTTTTTAATTATACAAAACCAGGTAGTGATGAATTGAATTATTACACGA |
| ATATATCTAGAGGTTATAATGTTTCGGAAGAAATATTTGATGATTTATGGATGAATCTGTA |
| TTACTTGTTTAAGAATTTAAGGAATTTATTTAAAGAAGAAGGACTCGAACCATGGACATC |
| ATGCGAATTTGACTTTACAAGAGACGGCAAATTGAAAGTATCATTTGATTATATAGATTG |
| GATTAATACAGAGTTTGATCAATTGGGCCGTGAAAATTACTATATGTACAAAAAGTTTGG |
| TGTTTTACCAGAAATGGAATACGAGATGGAAGAAATTAAAGAAATCGAGCAATATATTAA |
| AGAGCAAGATGAAGCTGAACTAGGTACC |

[^0]Restriction sites are underlined
ermC integration synthetic construct

Abstract

GTCGACGCAGGTAGAGATACAAGAGGATTAATTCGTTTACATCAATTCGATAAAGTGGA AATGGTACGTTTTGAACAACCTGAAGATTCATGGAATGCTTTAGAAGAAATGACAACAAA CGCAGAAGCAATTCTAGAAGAGTTAGGTTTACCATACCGTCGTGTTATTTTATGTACAG GTGATATTGGATTTAGTGCAAGCAAAACATATGATTTAGAAGTTTGGTTACCAAGCTACA ATGATTATAAAGAAATTAGTTCATGCTCAAACTGTACGGATTTCCAAGCGCGTCGTGCTA ACATCCGCTTCAAGCGTGACAAAGCAGCTAAACCAGAATTAGCACATACATTAAATGGT AGTGGTTTAGCAGTTGGACGTACATTTGCTGCTATTGTTGAAAATTACCAAAATGAAGAT GGAACAGTAACAATTCCAGAAGCATTAGTACCATTTATGGGTGGTAAAACACAAATTTCA AAACCAGTTAAATAAAGGCTTTAGCTACAAGCTTTAAAAAGTATATATCTACGTATACTTA AAGCAAGGGCAAGATACTTTAAATAATATTTTAAAAAGTGGTGACGAAGCTGTCGCCAC TTTTTTTGTGCTGTAAAAATATAATAGTGAGGATGCAGTTGTAAAGGGACAAGAGCTTTG GTATAATATAAAATTGTGAGTAATAGAATTATTGCTCCTTGCCCATTATGGGCCGCTTAG TCCAAAAGGAGGTGCAAACAGATGAACGAGAAAAATATAAAACACAGTCAAAACTTTATT AСTTCAAAACATAATATAGATAAAATAATGACAAATATAAGATTAAATGAACATGATAATA TCTTTGAAATCGGCTCAGGAAAAGGGCATTTTACCCTTGAATTAGTACAGAGGTGTAATT TCGTAACTGCCATTGAAATAGACCATAAATTATGCAAAACTACAGAAAATAAACTTGTTG ATCACGATAATTTCCAAGTTTTAAACAAGGATATATTGCAGTTTAAATTTCCTAAAAACCA ATCCTATAAAATATTTGGTAATATACCTTATAACATAAGTACGGATATAATACGCAAAATT GTTTTTGATAGTATAGCTGATGAGATTTATTTAATCGTGGAATACGGGTTTGCTAAAAGA TTATTAAATACAAAACGCTCATTGGCATTATTTTTAATGGCAGAAGTTGATATTTCTATAT TAAGTATGGTTCCAAGAGAATATTTTCATCCTAAACCTAAAGTGAATAGCTCACTTATCA GATTAAATAGAAAAAAATCAAGAATATCACACAAAGATAAACAGAAGTATAATTATTTCGT TATGAAATGGGTTAACAAAGAATACAAGAAAATATTTACAAAAAATCAATTTAACAATTCC TTAAAACATGCAGGAATTGACGATTTAAACAATATTAGCTTTGAACAATTCTTATCTCTTT TCAATAGCTATAAATTATTTAATAAGTAAGTTACAACCAATGACGACTGGGGCATITCTTT AATGAATTGCTCCAGTTTTTGTCCAATGCACATAACAACAATAAATTAAGTTTGTGGTTTA ATGGGGTGAACGCATTTCATTATAGCAACAATACGGGATAATTATGATGAACTAAAACAA TCTAAAACGTAACAAGTTTGAGCATCACTAATATAGGAAAGGAAGCGATAAAATACTGAT TTCGTTGATATGTAGTATGAGTTATATCGATGGAGTAGGGTAGGGGGAGGGGATGATTA TAAGGGAGTGGTACATGAATCAATATCCCAGACTCATCATCAGATATAAAAATTTATAAA ATTGATACTTAAAAACAACTACAAATCCATAGAAAATATGGAGGTAGTCTTAAATAAAAAA TTGAAAATTCTCAAAAATAAAAAGTTAATATGAAGCTGACTAAAGACTCCGGAATGTCTA ACCTCAGACAAACTGATGTCTAATGTTATTGCTTAGGGTATAGAACTGTATTAGACTAGG TATATTATTTTTTCGTAATTATATAAATATAAAGTGGCAAAGGAGGTAATTGAGATGACAA CACATTTAAGTTTTAGACAAGGCGTGCAAGAGTGTATCCCAACATTATTGGGTTATGCC GGTGTTGGTATTTCATTTGGTATTGTGGCTTCGTCTCGAATTC

Restriction sites underlined, ermC sequence in italics, $r p s F$ promoter sequence from B. subtilis and $\operatorname{trx} A$ rho-independent terminator sequence from S. aureus flanking the ermC gene are dashed and the whole integration cassette sandwiched between the homology region (622 bp 5', 617 bp 3') for integration.

Synthetic ess region from esxA to esxB, codon optimised for E. coli.

gtcgacATGgcgatgattaaaatgagcccggaagaaattcgcgcgaaaagccagagctatggccagggcagcgatcagat tcgccagattctgagcgatctgacccgcgcgcagggcgaaattgcggcgaactgggaaggccaggcgtttagccgctttgaag aacagtttcagcagctgagcccgaaagtggaaaaatttgcgcagctgctggaagaaattaaacagcagctgaacagcaccgc ggatgcggtgcaggaacaggatcagcagctgagcaacaactttggcctgcagTAAgcattctgaaattggcaaagtcacattt tctaatgtggctttgcttatcattttttaagaaaacaactgaaaggaaataagcATGaaaaaaaaaaactggatttatgcgctgat tgtgaccctgattattattattgcgattgtgagcatgatttttttgtgcagaccaaatatggcgatcagagcgaaaaaggcagccag agcgtgagcaacaaaaacaacaaaattcatattgcgattgtgaacgaagatcagccgaccacctataacggcaaaaaagtg gaactgggccaggcgtttattaaacgcctggcgaacgaaaaaaactataaatttgaaaccgtgacccgcaacgtggcggaaa gcggcctgaaaaacggcggctatcaggtgatgattgtgattccggaaaactttagcaaactggcgatgcagctggatgcgaaa acgccgagcaaaattagcctgcagtataaaaccgcggtgggccagaaagaagaagtggcgaaaaacaccgaaaaagtgg
tgagcaacgtgctgaacgatttaacaaaaacctggtggaaatttatctgaccagcattattgataacctgcataacgcgcagaa aaacgtgggcgcgattatgacccgcgaacatggcgtgaacagcaaatttagcaactatctgctgaacccgattaacgatttccg gaactgtttaccgataccctggtgaacagcattagcgcgaacaaagatattaccaaatggttcagacctataacaaaagcctgc tgagcgcgaacagcgatacctttcgcgtgaacaccgattataacgtgagcaccctgattgaaaaacagaacagcctgttgatg aacataacaccgcgatggataaaatgctgcaggattataaaagccagaaagatagcgtggaactggataactatattaacgcg ctgaaacagatggatagccagattgatcagcagagcagtatgcaggataccggcaaagaagaatataaacagaccgtgaaa gaaaacctggataaactgcgcgaaattattcagagccaggaaagcccgtttagcaaaggcatgattgaagattatcgcaaaca gctgaccgaaagcctgcaggatgaactggcgaacaacaaagatctgcaggatgcgctgaacagcattaaaatgaacaacgc gcagtttgcggaaaacctggaaaaacagctgcatgatgatattgtgaaagaaccggataccgataccaccttatttataacatg agcaaacaggattttattgcggcgggcctgaacgaagatgaagcgaacaaatatgaagcgattgtgaaagaagcgaaacgct ataaaaacgaatataacctgaaaaaaccgctggcggaacatattaacctgaccgattatgataaccaggtggcgcaggatacc agcagcctgattaacgatggcgtgaaagtgcagcgcaccgaaaccattaaaagcaacgatattaaccagctgaccgtggcga ccgatccgcatttaactttgaaggcgatattaaaattaacggcaaaaaatatgatattaaagatcagagcgtgcagctggatacc agcaacaaagaatataaagtggaagtgaacggcgtggcgaaactgaaaaaagatgcggaaaaagatttctgaaagataaa accatgcatctgcagctgctgtttggccaggcgaaccgccaggatgaaccgaacgataaaaaagcgaccagcgtggtggatg tgaccctgaaccataacctggatggccgcctgagcaaagatgcgctgagccagcagctgagcgcgctgagccgcttgatgcg cattataaaatgtataccgataccaaaggccgcgaagataaaccgtttgataacaaacgcctgattgatatgatggtggatcagg tgattaacgatatggagagctttaaagatgataaagtggcggtgctgcatcagattgatagcatggaagaaaacagcgataaac tgattgatgatattctgaacaacaaaaaaaacaccaccaaaaacaaagaagatattagcaaactgattgatcagctggaaaac gtgaaaaaaacctttgcggaagaaccgcaggaaccgaaaattgataaaggcaaaaacgatgaatttaacaccatgagcagc aacctggataaagaaattagccgcattagcgaaaaaagcacccagctgctgagcgatacccaggaaagcaaaagcattgcg gatagcgtgagcggccagctgaaccaggtggataacaacgtgaacaaactgcacgcgacgggccgcgcgctgggcgtgcg cgcgaacgatctgaaccgccagatggcgaaaaacgataaagataacgaactgttgcgaaagaatttaaaaaagtgctgcag aacagcaaagatggcgatcgccagaaccaggcgctgaaagcgtttatgagcaacccggtgcagaaaaaaaaucctggaaaa cgtgctggcgaacaacggcaacaccgatgtgattagcccgaccctgttgtgctgctgatgtatctgctgagcatgattaccgcgta tatttttatagctatgaacgcgcgaaaggccagatgaactttattaaagatgattatagcagcaaaaaccatctgtggaacaacgt gattaccagcggcgtgattggcaccaccggcctggtggaaggcctgattgtgggcctgattgcgatgaacaaatttcatgtgctgg cgggctatcgcgcgaaatttattctgatggtgattctgaccatgatggtgttgtgctgattaacacctatctgctgcgccaggtgaaa agcattggcatgtttctgatgattgcggcgctgggcctgtatttgtggcgatgaacaacctgaaagcggcgggccagggcgtgac caacaaaattagcccgctgagctatattgataacatgttttttaactatctgaacgcggaacatccgattggcctggtgctggtgattc tgaccgtgctggtgattattggctttgtgctgaacatgttattaaacattttaagaaagagagatTAAtctaATGctgatgaacag cgtgattgcgctgacctttctgaccgcgagcagcaacaacggcggcctgaacattgatgtgcagcaggaagaagaaaaaacgc attaacaacgatctgaaccagtatgataccaccctgtttaacaaagatagcaaagcggtgaacgatgcgattgcgaaacagaa aaaagaacgccagcagcagattaaaaacgatatgtttcagaaccaggcgagccatagcacccgcctgaacgaaaccaaaa aagtgctgttagcaaaagcaacctggaaaaaaccagcgaaagcgataaaagcccgtatattcagaacaaacaggaaaaa aaaattttccgtatattctgatgagcgtgggggctttttgactttaggatTTGtcatttttcaattcataaagggagacgaacgaaa aatgaatcagcacgtaaaagtaacattTGAtttaccaactataactatggcacctatgatctggcggtgccggcgtatctgccga ttaaaaacctgattgcgctggtgctggatagcctggatattagcattttgatgtgaacacccagattaaagtgatgaccaaaggcc agctgctggtggaaaacgatcgcctgattgattatcagattgcggatggcgatattctgaaactgctgTAGgaggaaaaatagA TGgtgaaaaaccataacccgaaaaacgaaatgcaggatatgctgaccccgctggatgcggaagaagcggcgaaaaccaa actgcgcctggatatgcgcgaaattccgaaaagcagcattaaaccggaacattttcatctgatgtatctgctggaacagcatagc ccgtatttattgatgcggaactgaccgaactgcgcgatagctttcagattcattatgatattaacgataaccataccccgttgataa cattaagagctttaccaaaaacgaaaaaactgcgctatctgctgaacattaaaaacctggaagaagtgaaccgcacccgctata ccttgtgctggcgccggatgaactgtttttacccgcgatggcctgccgattgcgaaaacccgcggcctgcagaacgtggttgatc cgctgccggtgagcgaagcggaatttctgacccgctataaagcgctggtgatttgcgcgttaacgaaaaaacagagcttgatgc gctggtggaaggcaacctggaactgcataaaggcaccccgttgaaaccaaagtgattgaagcggcgaccctggatctgctga ccgcgttctggatgaacagtatcagaaacaggaacaggattatagccagaactatgcgtatgtgcgcaaagtgggccataccg tgtttaaatgggtggcgattggcatgaccaccctgagcgtgctgctgattgcgttctggcgttctgtatttagcgtgatgaaacata acgaacgcattgaaaaaggctatcaggcgttgtgaaagatgattatacccaggtgctgaacacctatgatgatctggatggcaa aaaactggataaagaagcgctgtatatttatgcgaaaagctatattcagaccaacaaacagggcctggaaaaagataaaaaa gaaaacctgctgaacaacgtgaccccgaacagcaacaaagattatctgctgtattggatggaactgggccagggccatctgga tgaagcgattaacattgcgacctatctggatgataacgatattaccaaactggcgctgattaacaaactgaacgaaattaaaaac aacggcgatctgagcaacgataaacgcagcgaagaaaccaaaaaatataacgataaactgcaggatattctggataaagaa aaacaggtgaaagatgaaaaagcgaaaagcgaagaagaaaaagcgaaagcgaaagatgaaaaactgaaacagcagg aagaaaacgaaaaaaaacagaaagaacaggcgcagaaagataaagaaaaacgccaggaagcggaacgcaaaaaaT

AGtataggactgaggcaaagacaATGcataaactgattattaaatataacaaacagctgaaaatgctgaacctgcgcgatg gcaaaacctataccattagcgaagatgaacgcgcggatattaccctgaaaagcctgggcgaagtgattcatctggaacagaac aaccagggcacctggcaggcgaaccataccagcattaacaaagtgctggtgcgcaaaggcgatctggatgatattaccctgc agctgtataccgaagcggattatgcgagctttgcgtatccgagcattcaggataccatgaccattggcccgaacgcgtatgatgat atggtgattcagagcctgatgaacgcgattattattaaagatttcagagcattcaggaaagccagtatgtgcgcattgtgcatgata aaaacaccgatgtgtatattaactatgaactgcaggaacagctgaccaacaaagcgtatattggcgatcatatttatgtggaagg catttggctggaagtgcaggcggatggcctgaacgtgctgagccagaacaccgtggcgagcagcctgattcgcctgacccagg aaatgccgcacgcgcaggcggatgattataacacctatcatcgcagcccgcgcattattcatcgcgaaccgaccgatgatatta aaattgaacgcccgccgcagccgattcagaaaaacaacaccgtgatttggcgcagcattattccgccgctggtgatgattgcgct gaccgtggtgattttctggtgcgcccgattggcatttatattctgatgatgattggcatgagcaccgtgaccattgtgttggcattacc acctatttagcgaaaaaaaaaaatataacaaagatgtggaaaaacgcgaaaaagattataaagcgtatctggataacaaaa gcaaagaaattaacaaagcgattaaagcgcagcgctttagcctgaactatcattatccgaccgtggcggaaattaaagatattgt ggaaaccaaagcgccgcgcatttatgaaaaaaccagccatcaccatgatttctgcattataaactgggcattgcgaacgtgga aaagagcttaaactggattatcaggaagaagaatttaaccagcgccgcgatgaactgtttgatgatgcgaaagaactgtatga atttataccgatgtggaacaggcgccgctgattaacgatctgaaccacggcccgattgcgtatattggcgcgcgccatctgattct ggaagaactggaaaaaatgctgattcagctgagcacctttcatagctatcacgatctggaatttctgttgtgacccgcgaagatg aagtggaaaccctgaaatgggcgcgctggctgccgcacatgaccctgcgcggccagaacattcgcggcttgtgtataaccag cgcacccgcgatcagattctgaccagcatttatagcatgattaaagaacgcattcaggcggtgcgcgaacgcagccgcagcaa cgaacagattattttaccccgcagctggtgtttgtgattaccgatatgagcctgattattgatcatgtgattctggaatatgtgaacca ggatctgagcgaatatggcattagcctgattttgtggaagatgtgattgaaagcctgccggaacatgtggataccattattgatatt aaaagccgcaccgaaggcgaactgattaccaaagaaaaagaactggtgcagctgaaatttaccccggaaaacattgataac gtggataaagaatatattgcgcgccgcctggcgaacctgattcatgtggaacatctgaaaaacgcgattccggatagcattacctt tctggaaatgtataacgtgaaagaagtggatcagctggatgtggtgaaccgctggcgccagaacgaaacctataaaacgatgg cggtgccgctgggcgtgcgcggcaaagatgatattctgagcctgaacctgcatgaaaaagcgcatggcccgcatggcctggtg gcgggcaccaccggcagcggcaaaagcgaaattattcagagctatattctgagcctggcgattaacttcatccgcatgaagtg gcgtttctgctgattgattataaaggcggcggcatggcgaacctgtttaaagatctggtgcatctggtgggcaccattaccaacctg gatggcgatgaagcgatgcgcgcgctgaccagcattaaagcggaactgcgcaaacgccagcgcctgttggcgaacatgatg tgaaccatattaaccagtatcataaactgtttaaagaaggcattgcgaccgaaccgatgccgcatctgtttattattagcgatgaatt tgcggaactgaaaagcgaacagccggatttatgaaagaactggtgagcaccgcgcgcattggccgcagcctgggcattcatc tgattctggcgacccagaaaccgagcggcgtggtggatgatcagatttggagcaacagcaaatttaaactggcgctgaaagtg caggatcgccaggatagcaacgaaattctgaaaaccccggatgcggcggatattaccctgccgggccgcgcgtatctgcaggt gggcaacaacgaaatttatgaactgttcagagcgcgtggagcggcgcgacctatgatattgaaggcgataaactggaagtgg aagataaaaccatttatatgattaacgattatggccagctgcaggcgattaacaaagatctgagcggcctggaagatgaagaaa ccaaagaaaaccagaccgaactggaagcggtgattgatcatattgaaagcattaccacccgcctggaaattgaagaagtgaa acgcccgtggctgccgccgctgccggaaaacgtgtatcaggaagatctggtggaaaccgatttcgcaaactgtggagcgatg atgcgaaagaagtggaactgaccctgggcctgaaagatgtgccggaagaacagtatcagggcccgatggtgctgcagctga aaaaagcgggccatattgcgctgattggcagtccgggctatggccgcaccacctttctgcataacattattttgatgtggcgcgcc atcatcgcccggatcaggcgcacatgtatctgtttgatttggcaccaacggcctgatgccggtgaccgatattccgcatgtggcgg attattttaccgtggatcaggaagataaaattgcgaaagcgattcgcattttaacgatgaaattgatcgccgcaaaaaaattctga gccagtatcgcgtgaccagcattagcgaatatcgcaaactgaccggcgaaaccattccgcatgtgtttattctgattgataactttg atgcggtgaaagatagcccgtttcaggaagtgttgaaaaacatgatgattaaaatgacccgcgaaggcctggcgctggatatgc aggtgaccctgaccgcgagccgcgcgaacgcgatgaaaaccccgatgtatattaacatgaaaacccgcattgcgatgttctgt atgataaaagcgaagtgagcaacgtggtgggccagcagaaatttgcggtgaaagatgtggtgggccgcgcgctgctgagcag cgatgataacgtgagctttcatattggccagccgttaaacatgatgaaaccaaaagctataacgatcagattaacgatgaagtg agcgcgatgaccgaatttataaaggcgaaaccccgaacgatattccgatgatgccggatgaaattaaatatgaagattatcgc gaaagcctgaacctgccggatattgtggcgaacggcgcgctgccgattggcctggattatgaaggcgtgaccctgcagaaaatt aaactgaccgaaccggcgatgattagcagcgaaaacccgcgcgaaattgcgcatattgcggaaattatgatgaaagaaattg atattctgaacgaaaaatatgcgattgcattgcggatagcagcggcgaatttaaagcgtatcgccatcaggtggcgaactttgcg gaagaacgcgaagatattaaagcgattcatcagctgatgattgaagatctgaaacagcgcgaaatggatggcccgttgaaaa agatagcctgtatattattaacgatttaaaaacctttattgattgcacctatattccggaagatgatgtgaaaaaactgattaccaaag gcccggaactgggcctgaacattctgttgtgggcattcataaagaactgattgatgcgtatgataaacagattgatgtggcgcgc aaaatgattaaccagtttagcattggcattcgcattagcgatcagcagtttttaaatttcgctttattcagcgcgaaccggtgattaaa gaaaacgaagcgtatatggtggcgaaccaggcgtatcagaaaattcgctggttaaaTAAcaatgaattaaataggagggag gtatgttATGaactttaacgatattgaaacgatggtgaaaagcaaatttaaagatattaaaaaacatgcggaagaaattgcgca tgaaattgaagtgcgcagcggctatctgcgcaaagcggaacagtataaacgcctggaatttaacctgagcttgcgctggatgat
attgaaagcaccgcgaaagatgtgcagaccgcgaaaagcagcgcgaacaaagatagcgtgaccgtgaaaggcaaagcgc cgaacaccctgtatattgaaaaacgcaacctgatgaaacagaaactggaaatgctgggcgaagatattgataaaaacaaaga aagcctgcagaaagcgaaagaaattgcgggcgaaaaagcgagcgaatattttaacaaagcgatgaacTAAtattgaggtg aagatATGggcggctataaaggcattaaagcggatggcggcaaagtggatcaggcgaaacagctggcggcgaaaaccgc gaaagatattgaagcgtgccagaaacagacccagcagctggcggaatatattgaaggcagcgattgggaaggccagttgcg aacaaagtgaaagatgtgctgctgattatggcgaaatttcaggaagaactggtgcagccgatggcggatcatcagaaagcgatt gataacctgagccagaacctggcgaaatatgataccctgagcattaaacagggcctggatcgcgtgaacccgTAAaagctt

Restriction sites underlined, start and stop codons shown in upper case.

Supplementary Table 1. Strains used in this study

Strain	Relevant genotype or description	Source or reference
S. aureus strains		
RN6390	NCTC8325 derivative, rbsU, tcaR, cured of $\varphi 11$, $\varphi 12, \varphi 13$	Refence ${ }^{1}$
\triangle ess C	As RN6390, Δ ess C	Reference ${ }^{2}$
Δ ess	Complete deletion from esxA - esaG	Reference ${ }^{2}$
$\triangle \mathrm{esaE}$	As RN6390, Δ esaD	This work
$\triangle \mathrm{esaD}$	As RN6390, ${ }^{\text {esaE }}$	This work
$\triangle e s a D G$	As RN6390, $\mathrm{ses}^{\text {sadG }}$	This work
$\begin{aligned} & \text { पsaouhsc00268- } \\ & 00278 \end{aligned}$	As RN6390, Δ esaD-saouhsc00278	This work
$\begin{aligned} & \hline \text { ssaouhsc00274- } \\ & 00278 \end{aligned}$	As RN6390, Δ saouhsc00274-saouhsc00278	This work
RN6390::ermC	As RN6390, with ermC resistance gene chromosomal insertion	This work
\esaDG::ermC	As Δ esaDG with ermC resistance gene from RN6390::ermC (phage $\phi 11$ transduction)	This work
$\begin{aligned} & \text { पsaouhsc00268- } \\ & \text { 00278::ermC } \end{aligned}$	As \triangle esaD-saouhsc00278 with ermC resistance gene from RN6390::ermC (phage $\phi 11$ transduction)	This work
$\begin{aligned} & \text { पsaouhsc00274- } \\ & \text { 00278::ermC } \end{aligned}$	As Δ saouhsc00274-saouhsc00278 with ermC resistance gene from RN6390::ermC (phage $\phi 11$ transduction)	This work
COL	MRSA, agr	Reference ${ }^{3}$
COLDess	Complete deletion from Sacol0271 (esxA) Sacol0282	Reference ${ }^{2}$
E. coli strains		
JM110	rpsL thr leu thi lacY galK galT ara tonA tsx dam dcm glnV44 Δ (lac-proAB) e14- [F' traD36 proAB ${ }^{+}$ lac/9 lacZAM15] hsdR17($\mathrm{rK}^{-} \mathrm{mK}^{+}$)	Stratagene
BL21(DE3)	E. coli $\mathrm{B}: \mathrm{F}^{-}, d c m$, ompT, hsdS(rB-, mB-), gal,入DE3	Reference ${ }^{4}$

M15 [pREP4]	F-, lac, ara, gal, mtl [(Kan ${ }^{\text {R }, ~ l a c /] ~}$	Qiagen
BTH101	F- cya-99, araD139, galE15, galK16, rpsL1 (Str'), hsdR2, mcrA1, mcrB1	Reference ${ }^{5}$

Supplementary Table 2. Plasmids used in this study

Plasmid	Relevant genotype or description	Source or reference
pIMAY	E. coli/S. aureus shuttle vector, temperature sensitive, $\mathrm{cml}^{\text {r }}$	6
pIMAY-esaE	pIMAY carrying esaE deletion allele	This work
pIMAY-esaD	pIMAY carrying esaD deletion allele	This work
pIMAY-esaDG	pIMAY carrying esaDG deletion allele	This work
pIMAY- saouhsc00268-00278	pIMAY carrying esaD-saouhsc00278 deletion allele	This work
pIMAY- saouhsc00274-00278	pIMAY carrying saouhsc00274-saouhsc00278 deletion allele	This work
pRAB11	E. coli/S. aureus shuttle vector, inducible protein expression, amp ${ }^{\text {r }}, \mathrm{cml}^{\text {r }}$	Reference ${ }^{7}$
$\begin{array}{\|l\|} \hline \text { pRAB11- } \\ \text { EsaD(H528A)-HA } \\ \hline \end{array}$	pRAB11 producing C-terminally HA-tagged EsaD	This work
pRAB11-EsaE-his	pRAB11 producing C-terminally His-tagged EsaE	This work
pRAB11-EsaG-his	pRAB11 producing C-terminally His-tagged	This work
pRAB11-EsaD-His-EsaG-HA	pRAB11 producing C-terminally His-tagged EsaD and C-terminally HA-tagged EsaG	This work
pRAB11-EsaD-HA- EsaG-His	pRAB11 producing C-terminally HA-tagged EsaD and C-terminally His-tagged EsaG	This work
$\begin{array}{\|l\|} \hline \text { pRAB11- } \\ \text { EsaD(H528A)-His } \\ \hline \end{array}$	pRAB11 producing C-terminally His-tagged H528A substituted EsaD	This work
pRAB11-EsaG-HA	pRAB11 producing C-terminally HA-tagged EsaG	This work
pRAB11-EsaE-HA	pRAB11 producing C-terminally HA-tagged EsaE	This work
pRAB11- EsaD(H528A)-His- EsaE-HA	pRAB11 producing C-terminally His-tagged H528A substituted EsaD and C-terminally HAtagged EsaE	This work
pRAB11- EsaD(H528A)-HA- EsaE-His	pRAB11 producing C-terminally HA-tagged H528A-substituted EsaD and C-terminally Histagged EsaE	This work
pRAB11-EsaD ${ }_{421-614}$ (H528A)-His-EsaGHA	pRAB11 producing C-terminally His-tagged H528A substituted nuclease domain of EsaD (aa 421-614and C-terminally HA-tagged EsaG	This work
pRAB11-EsaD ${ }_{421-614}$ (H528A)-His	pRAB11 producing C-terminally His-tagged H528A substituted nuclease domain of EsaD (aa 421-614)	This work
pRAB11-EsxC	pRAB11 producing native (untagged) EsxC	This work
pQE70	Vector for regulatable protein overproduction in E. coli (T5 promoter). Ampr	Qiagen
pQE70-EsaE-HA-EsaD-Myc-EsaG-His ${ }^{1}$	pQE70 producing C-terminally HA-tagged EsaE, C-terminally Myc-tagged EsaD and C-terminally His-tagged EsaG	This work

pQE70-EsaE-HA- EsaD(H528A)-Myc- EsaG-His ${ }^{\dagger}$	pQE70 producing C-terminally HA-tagged EsaE, C-terminally Myc-tagged H528A-substituted EsaD and C-terminally His-tagged EsaG	This work
pQE70-EsaE-HA- EsaG-His	pQE70 producing C-terminally HA-tagged EsaE and C-terminally His-tagged EsaG	This work
pQE70-EsaG-EsaG- EsaD ${ }_{421-614-\mathrm{His}}$	pQE70 producing tandem copies of EsaG and C-terminally His-tagged EsaD ${ }_{421-614}$	This work
pQE70-EsaG-EsaG- EsaD ${ }_{421-614(H 528 A)-}$ His	pQE70 producing tandem copies of EsaG and C-terminally His-tagged H528A substituted EsaD ${ }_{421-614}$	This work
pT7.5	Vector for regulatable protein production in E. coli (T7 promoter). Amp ${ }^{\text {r }}$	Reference ${ }^{8}$
pT7.5esaD(V584Y)	pT7.5 producing V584Y substituted EsaD	This work
pT7.5esaDG	pT7.5 producing EsaD and EsaG	This work
pT18	Vector encoding T18 fragment of B. pertussis cyaA; Ampr	Reference ${ }^{9}$
pT18-EsaE	pT18 carrying esaE	This work
pT18-EsaD(H528A)	pT18 carrying esaD (H528A codon substitution)	This work
pT18-EsaD ${ }_{1-420}$	pT18 carrying esaD (codons 1-420)	This work
pT18-EsaG	pT18 carrying esaG	This work
pT25	Vector encoding T18 fragment of B. pertussis cyaA; cmlr	Reference ${ }^{9}$
pT25-EsxA	pT25 carrying esxA	This work
pT25-EsxB	pT25 carrying esxB	This work
pT25-EsaB	pT25 carrying esaB	This work
pT25-EsxC	pT25 carrying esxC	This work
pT25-EsaE	pT25 carrying esaE	This work
pT25-EsaD(H528A)	pT25 carrying esaD (H528A codon substitution)	This work
pT25-EsaD ${ }_{421-614}$	pT25 carrying esaD (codons 421-614, with H528A codon substitution)	This work
pT25-EsxD	pT25 carrying esxD	This work
pT25-EsaG	pT25 carrying esaG	This work
pT25-saouhsc00274*	pT25 carrying saouhsc00274	This work
pT25-saouhsc00275*	pT25 carrying saouhsc00275	This work
pT25-saouhsc00276*	pT25 carrying saouhsc00276	This work

pT25-saouhsc00277*	pT25 carrying saouhsc00277	This work
pT25-saouhsc00278*	pT25 carrying saouhsc00278	This work
pT25-SAPIG0310*	pT25 carrying SAPIG0310	This work
pT25-SAPIG0311*	pT25 carrying SAPIG0311	This work
pT25-SAPIG0314*	pT25 carrying SAPIG0314	This work
pT25-SAR0293*	pT25 carrying SAR0293	This work
pT25-SAR0294*	pT25 carrying SAR0294	This work
pT25-SAR0295*	pT25 carrying SAR0295	This work
pT25-SAR0297*	pT25 carrying SAR0297	This work
pT25- SAEMRSA15_02570*	pT25 carrying SAEMRSA15_02570	This work
pT25- SAEMRSA15_02580*	pT25 carrying SAEMRSA15_02580	This work

${ }^{\text {tPurchased ready-cloned in the PQE70 vector from Biomatik. }}$
*Purchased ready-cloned in the pT25 vector from Genescript.

Supplementary Table 3. Oligonucleotides and cloning strategies used in this study

Name	Nucleotide Sequence ($5^{\prime}-3^{\prime}$)	Template	Restriction Enzyme	Usage
EsaE-for-bgIII-esxARBS	GCAGATCTAGGAGGTTTCTACTTATGAAAGATGTT AAGCGAAT	gDNA	BgIII	Construction of pRAB11-EsaEhis 1 and pRAB11-EsaE-HA ${ }^{1}$
EasE-rev-sacl-HA	GCGAGCTCTTATGCATAATCTGGAACATCATATGGATACTCCT CTGCTTTATTAATATGAT	gDNA	Sacl	Construction of pRAB11-EsaEHA ${ }^{1}$
EasE-rev-sacl-His	GCGAGCTCTTAGTGGTGGTGGTGGTGGTGCTCCTCTGCTTTATTA ATATGAT	gDNA	Sacl	Construction of pRAB11-EsaEhis ${ }^{1}$
EsaG-for-bgl II	GCGCAGATCTAGGAGGTTTCTACTTCAACATGACATTTGAAGAGA	gDNA	BgIII	Construction of pRAB11-EsaG-his ${ }^{1}$ and pRAB11-EsaGH^{1}
esaG-rev-Sacl-HA	GCGAGCTCTTATGCATAATCTGGAACATCATATGGATATTCTTCTA GCTCTTTAATATATT	gDNA	Sacl	Construction of pRAB11-EsaGH^{1}
esaG-rev-his-EcoRI	GCGAATTCTTAGTGGTGGTGGTGGTGGTGTTCTTCTAGCTCTTTAA TATATT	gDNA	EcoRI	Construction of pRAB11-EsaGhis ${ }^{1}$
esaD-kpnl-for-esxARBS	GAAAGGTACCAGGAGTTTCTACTTATGACAAAAGA TATTGAATATCTAAC	gDNA	Kpnl	Construction of pRAB11-EsaD(H528A)-his ${ }^{1}$ and pRAB11-EsaD(H528A)-HA ${ }^{1}$
esaD-his-to-ala-for	CGATGATGGAGGTGCATTAATCGCTAGAATG	gDNA		Change of His to Ala codon at codon 528 of esa ${ }^{2}$
esaD-his-to-ala-rev	CATTCTAGCGATTAATGCACCTCCATCATCG	gDNA		Change of His to Ala codon at codon 528 of esa ${ }^{2}$
EsaD-his-rev-bgl II	GCGCAGATCTCTAGTGGTGGTGGTGGTGGTGCTTATTTAATATTCT TCTAATATTTCT	gDNA/ esaD(H528A)	BgIII	Construction of pRAB11-EsaD(H528A)-his ${ }^{1}$ and pRAB11-EsaD ${ }_{421-614(H 528 A)-}$ His ${ }^{1}$
EsaD-HA-rev-bgl II	GCGCAGATCTCTATGCATAATCTGGAACATCATATGGATACTTATTT AATATTCTTCTAATATTTCT	gDNA /esaD(H528A)	BgII	Construction of pRAB11-EsaD(H528A)-HA ${ }^{1}$

esaD(421-614aa)-kpnI- for-esXA-RBS	GAAAGGTACCAGGAGGTTTCTACTTATGACACATGGTCCAAAAGAT AGTATGGTGAG	esaD(H528A)	KpnI	Construction of pRAB11- EsaD421-614(H528A)-His
00268-00278A1	CATGGAGCTCGATTGTACAATC	gDNA	Construction of pIMAY- saouhsc_00268-00278	
00268-00278A2	TGTCTGCTACATGTCATGCACCTATCCCTC	gDNA	Construction of pIMAY- saouhsc_00268-00278	
00268-00278B1	CATGACATGTAGCAGACATGTTATAAAAGACTGTG	gDNA	Construction of pIMAY- saouhsc_00268-00278	
00268-00278B2	GCGCGAGCTCCATCTATTTCAGTGTTAATTTAC	gDNA	Sacl	
Construction of pIMAY-				
saounsc_00268-00278 ${ }^{3}$				

0268A1	AGAAGGATCCAATGATTGGGACTTTAAAC	gDNA	BamHI	Construction of pIMAY-esaD ${ }^{3}$ and pIMAY-esaDG ${ }^{3}$
0268A2	CTTATTTAATTTTGTCATGTCATGCACC	gDNA		Construction of pIMAY-esaD ${ }^{3}$ and pIMAY-esaDG ${ }^{3}$
0268B1	ATGACAAAATTAAATAAGTAGAGGTGCC	gDNA		Construction of pIMAY-esaD3
0268B2	TGAGGATCCACTTTACGGTATCTATTG	gDNA	BamHI	Construction of pIMAY-esaD3
0269A1	GGTTGAATTCGGAGAACACTATGC	gDNA	EcoRI	Construction of pIMAY-esaG ${ }^{3}$
0269A2	TTATTCTTCAAATGTCATGTTGGCACCTC	gDNA		Construction of pIMAY-esaD ${ }^{3}$
0269B1	ATGACATTTGAAGAATAAACTATCTTAATG	gDNA		Construction of pIMAY-esaD ${ }^{3}$ and pIMAY-esaDG ${ }^{3}$
0269B2	AAAGGATCCATGTTGCAAATACTGCG	gDNA	BamHI	Construction of pIMAY-esaG ${ }^{3}$ and pIMAY-esaD ${ }^{3}$
EsaG-out1	TGGGTCAAAACATAAAGCGTGC			Sequencing primer
EsaG-out2	ACGTGAACATTCCGCCAATTAC			Sequencing primer
RT-PCR-primer pair 1for	ACATGGTCCAAAAGATAGTATGGTGAG	gDNA		RT-PCR
RT-PCR-primer pair 1rev	GCACCTCTACTTATTTAATATTCTTC	gDNA		RT-PCR
RT-PCR-primer pair 2for	GAAGAATATTAAATAAGTAGAGGTGC	gDNA		RT-PCR
RT-PCR-primer pair 2rev	GTCATCATCTTCAGTGTTTAATTC	gDNA		RT-PCR
RT-PCR-primer pair 3for	GATACTCTTCGAAAGCCAGGTGCAC	gDNA		RT-PCR

RT-PCR-primer pair 3rev	GTCATCATCTTCAGTGTTTAATTC	gDNA		RT-PCR
pT25-EsxA-F	GCGCGGATCCCGCGATGATTAAAATGAGCCCGGAAG	Synthetic esxA gene sequence ${ }^{\dagger}$	BamHI	Construction of pT25-EsxA ${ }^{4}$
pT25-EsxA-R	GCGCGGTACCTTACTGCAGGCCAAAGTTGTTGCTCAGC	Synthetic esxA gene sequence ${ }^{\dagger}$	Kpnl	Construction of pT25-EsxA ${ }^{4}$
pT25-EsxB-F	GCGCGGATCCCGGGCGGCTATAAAGGCATTAAAGC	Synthetic esxB gene sequence ${ }^{\dagger}$	BamHI	Construction of pT25-EsxB ${ }^{4}$
pT25-EsxB-R	GCGCGGTACCTTACGGGTTCACGCGATCCAGGCCCTG	Synthetic esxB gene sequence ${ }^{\dagger}$	Kpnl	Construction of pT25-EsxB ${ }^{4}$
pT25-EsaB-F	GCGCGGATCCCAATCAGCACGTAAAAGTAACATTTG	Synthetic esaB gene sequence ${ }^{\dagger}$	BamHI	Construction of pT25-EsaB ${ }^{4}$
pT25-EsaB-R	GCGCGGTACCTTACAGCAGCAGTTTCAGAATATCGCCATCC	Synthetic esa B gene sequence ${ }^{\dagger}$	Kpnl	Construction of pT25-EsaB ${ }^{4}$
pT25-EsaC-F	GCGCGGATCCCAACTTTAACGATATTGAAACGATG	Synthetic esxC gene sequence ${ }^{\dagger}$	BamHI	Construction of pT25-EsxC4
pT25-EsaC-R	GCGCGGTACCTTAGTTCATCGCTTTGTTAAAATATTCG	Synthetic esxC gene sequence ${ }^{\dagger}$	Kpnl	Construction of pT25-EsxC ${ }^{4}$
T25esaD-F	GCGCGGATCCCACAAAAGATATTGAATATCT	esaD(H528A)	BamHI	Construction of pT25- $\text { EsaD(H528A) }{ }^{4}$
T25esaD-R	GCGCGGTACCATTACTTATTTAATATTCTTCTAAT	esaD(H528A)	Kpnl	Construction of pT25- $\mathrm{EsaD}(\mathrm{H} 528 \mathrm{~A})^{4}$
T25esaE-F	GCGCGGATCCCAAAGATGTTAAGCGAATAGAT	gDNA	BamHI	Construction of pT25-EsaE ${ }^{4}$
T25esaE-R	GCGCGGTACCATTACTCCTCTGCTTTATTAATAT	gDNA	Kpnl	Construction of pT25-EsaE ${ }^{4}$
T25esaF-F	GCGCGGATCCCACGTTGAGTGGAAAAATTAGTG	gDNA	BamHI	Construction of pT25-EsxD ${ }^{4}$
T25esaF-R	GCGCGGTACCATTATCCCTCAATATTATAGT	gDNA	Kpnl	Construction of pT25-EsxD ${ }^{4}$
T25esaG-F	GCGCGGATCCCACATTTGAAGAGAAGCTTAG	gDNA	BamHI	Construction of $\mathrm{pT} 25-\mathrm{EsaG}^{4}$

T25esaG-R	GCGCGGTACCATTATTCTTCTAGCTCTTTAATA	gDNA	Kpnl	Construction of pT25-EsaG ${ }^{4}$
T25esaD-421-614-F	GCGCGGATCCCACACATGGTCCAAAAGATAG	esaD(H528A)	Kpnl	Construction of $\mathrm{pT} 25-\mathrm{EsaD}_{421}$ 614(H528A) $)^{4}$
T18esaD-F	GCGCGGGCCCCACAAAAGATATTGAATATCT	esaD(H528A)	Apal	Construction of pT 18 - $\text { EsaD(H528A) })^{5}$
T18esaD-R	GCGCCTCGAGGGCTTATTTAATATTCTTCTAAT	esaD(H528A)	Xhol	$\text { Construction of } \mathrm{pT} 18$ $\text { EsaD(H528A) }{ }^{5}$
T18esaE-F	GCGCGGGCCCCAAAGATGTTAAGCGAATAGAT	gDNA	Apal	Construction of pT18-EsaE ${ }^{5}$
T18esaE-R	GCGCCTCGAGGGCTCCTCTGCTTTATTAATAT	gDNA	Xhol	Construction of pT18-EsaE ${ }^{5}$
T18esaG-F	GCGCGGGCCCCACATTTGAAGAGAAGCTTAG	gDNA	Apal	Construction of pT18-EsaG ${ }^{5}$
T18esaG-R	GCGCCTCGAGGGTTCTTCTAGCTCTTTAATA	gDNA	Xhol	Construction of pT18-EsaG ${ }^{5}$
T18esaD-1-420-R	GCGCCTCGAGGGCACGTGATTTTGTGGTGTAACAG	gDNA	Xhol	Construction of pT18-esaD ${ }_{1-420}{ }^{5}$
pQE70-esaE-for	GCGAGCATGCATGAAAGACGTTAAACGTATC	Synthetic esaE gene sequence*	Sphl	Construction of pQE70-EsaE-HA-EsaG-his
pQE70-esaEG-overlapping-for	GAAATTAACCATGACCAAAAACAAATAATATTAAAGAGGAGAAATTA ACCATGACCTTCGAAGAAAAACTGTC	Synthetic esaEG gene sequence*		Construction of pQE70-EsaE-HA-EsaG-his
pQE70-esaEG-overlapping-rev	CATATGATGTTCCAGATTATGCATAATGGATCCATTAAAGAGGAGA AATTAACCATGACCAAAAACAAATAAT	Synthetic esaEG gene sequence*		Construction of pQE70-EsaE-HA-EsaG-his
EsaG-for-Sphl	GCGAGCATGCCCTTCGAAGAAAAACTGTCTAAAATC	Synthetic esaG gene sequence*	Sphl	Construction of pQE70-EsaG-EsaG-EsaD421-614-his and pQE70-EsaG-EsaG-EsaD421-614(H528A)-his ${ }^{6}$
EsaG-overlapping-for	GTACATCAAAGAA CTGGAATAATAA ATTAAAGAGG AGAAATTAACC ATGACCTTCGAAGAAAAACTG	Synthetic esaG gene sequence*		Construction of pQE70-EsaG-EsaG-EsaD421-614-his and pQE70-EsaG-EsaG-EsaD421-614(H528A)-his ${ }^{6}$
EsaG-overlapping-rev	CAGTTTTTCTTCGAAGGTCATGGTTAATTTCTCCTCTTTAATTTATTA TTCCAGTTCTTTGATGTAC	Synthetic esaG gene sequence*		Construction of pQE70-EsaG-EsaG-EsaD421-614-his and

				$\begin{aligned} & \text { pQE70-EsaG-EsaG-EsaD421- } \\ & \text { 614(H528A)-his }{ }^{6} \end{aligned}$
EsaG-rev-apal-bamHI	GCGAGGATCCGGGCCCTTATTATTCCAGTTCTTTGATGTACTGTTC G	Synthetic esaG gene sequence*	Apal/BamHI	Construction of pQE70-EsaG-EsaG-EsaD421-614-his and pQE70-EsaG-EsaG-EsaD421-614(H528A)-his ${ }^{6}$
EsaDnu-for-Apal	GCGA GGGCCC ATTAAAGAGGAGAAATTAACCATGCACGGTCCG AAAGACTCTATGGTTC	Synthetic esaD gene sequence*	Apal	Construction of pQE70-EsaG-EsaG-EsaD421-614-his and pQE70-EsaG-EsaG-EsaD421-614(H528A)-his ${ }^{6}$
EsaDnu-rev-BgIII	GCGAAGATCT TTTGTTCAGGATACGACGGATGTTACG	Synthetic esaD gene sequence*	BgIII	Construction of pQE70-EsaG-EsaG-EsaD421-614-his and pQE70-EsaG-EsaG-EsaD421-614(H528A)-his ${ }^{6}$
pQE70-esaD-qc-F	ACGACGACGGTGGTGCACTGATCGCGCGTATGTTCGGT	Synthetic esaD gene sequence*		Construction of pQE70-EsaE-HA-EsaD(H528A)-Myc-EsaGhis 7
pQE70-esaD-qc-R	ACCGAACATACGCGCGATCAGTGCACCACCGTCGTCGT	Synthetic esaD gene sequence*		Construction of pQE70-EsaE-HA-EsaD(H528A)-Myc-EsaGhis 7
pQE70-esaG-rev	GCGCAGATCTTTCCAGTTCTTTGATGTACTG	Synthetic esaG gene sequence*	BgIII	Construction of pQE70-EsaE-HA-EsaG-his
pT7.5-esaD--for	AGICTAGAAAGCTTTACTATAATATTGAGG	gDNA	Xbal	Construction of pT7.5esaD and pT7.5esaDG
pT7.5-esaD-xhol-rev	CTACTCGAGCTTATTTAATATTCTTCTAAT	gDNA	Xhol	Construction of pT7.5esaD(V584Y)
pT7.5-esaD/G-xhol-rev	GCCTCGAGTTCTTCTAGCTCTTTAATATATT	gDNA	Xhol	Construction of pT7.5esaDG
Intctrl1	CCAACTGCTGAAGTACCATTAACG			Checking chromosomal ermC integration
Intctr12	GTACCTGCTATAAACAACGCGCAC			Checking chromosomal ermC integration

Restriction enzyme sequences are shown in underline.
${ }^{1}$ esaE-His, esaE-HA and esaG-HA were cloned as Bglll-Sacl fragments, esaG-His was cloned as a Bglll-EcoRI fragment and esaD(H528A)-His, esaD(H528A)-HA and esaDNuc(aa 421-615; H528A)-His were cloned as Kpnl-Bglll fragments into similarly digested pRAB11. In each case the forward primer incorporated the esxA ribosome binding site (shown in red) to initiate translation.
${ }^{2}$ esaD(H528A) was generated by overlapping PCR generating DNA covering the N-terminus of esaD to just beyond codon 528 (amplified with primers esaD-kpnl-for-esxA-RBS and esaD-his-to-ala-rev introducing the H528A substitution) and from just prior to codon 258 to the end of esaD (amplified with primers esaD-his-to-ala-for and EsaD-his-rev-bgl II inducing H528A substitution). Subsequently the two fragments were spliced together by overlap PCR using primers esaD-kpnl-for-esxA-RBS and EsaD-his-rev-bgl II.
${ }^{3}$ The two flanking regions, upstream and downstream of the gene to be deleted including the first three and last three codons, were separately amplified with the A1/A2 and B1/B2 primer pairs. Next, overlapping PCR was performed with the A1 and B2 primers using the amplified flanking regions as template and the product was subsequently cloned into PIMAY (as a Sacl fragment for the saouhsc_00268-saouhsc_00278 deletion, a Sacl-Kpnl fragment for the saouhsc_00274-saouhsc_00278 deletion, a BamHI fragment for the esaD, esaDG and esaE deletions and an EcoRI-BamHI fragment for the esaG deletion). The primers out1 and out2 were using for sequencing to check the deletions, as shown schematically below.

${ }^{4}$ esxA, esxB, esxC, esaB, esaD(H528A), esaD ${ }_{421-614(H 528 A), ~ e s a E, ~ e s x D ~ a n d ~ e s a G ~ w e r e ~ e a c h ~ c l o n e d ~ a s ~ B a m H I-K p n l ~ f r a g m e n t s ~ i n t o ~ s i m i l a r l y ~ d i g e s t e d ~ p T 25 . ~}^{\text {p }}$.
${ }^{5} e s a D(H 528 A)$, esa D_{1-420}, esaE, and esaG, were each cloned as Apal-Xhol fragments into similarly digested pT18.
${ }^{\dagger}$ A 10,651bp synthetic DNA sequence coding for EsxA, EsaA, EssA, EssB, EssC EsxC, EsxB from RN6390, codon optimised for expression in E. coli was used as template. The sequence of this synthetic DNA is given in Fig S12.
${ }^{6}$ Two copies of esaG were amplified, one with primer pair EsaG-for-Sphl and EsaG-overlapping-for and the second with primer pair EsaG-overlapping-rev and EsaG-rev-apalbamHI and cloned into pQE70 by three way ligation as an Sphl-BamHI fragment. DNA encoding EsaD421-614 or EsaD421-614(H528A) was subsequently cloned into this as an Apal-Bglll fragment.
*A 3,125bp synthetic sequence coding for EsaE, EsaD(H528A) and EsaG. Sequence given in Fig S13. ${ }^{7}$ The (H528A) substitution of EsaD was introduced into this construct by Quickchange using the indicated primers.

Supplementary References

1 Novick, R. P. et al. Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. The EMBO journal 12, 3967-3975 (1993).
2 Kneuper, H. et al. Heterogeneity in ess transcriptional organization and variable contribution of the Ess/Type VII protein secretion system to virulence across closely related Staphylocccus aureus strains. Molecular microbiology 93, 928-943, doi:10.1111/mmi. 12707 (2014).
3 Gill, S. R. et al. Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. Journal of bacteriology 187, 2426-2438, doi:10.1128/JB.187.7.2426-2438.2005 (2005).
4 Studier, F. W. \& Moffatt, B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. Journal of molecular biology 189, 113130 (1986).
5 Karimova, G., Ullmann, A. \& Ladant, D. A bacterial two-hybrid system that exploits a cAMP signaling cascade in Escherichia coli. Methods Enzymol 328, 59-73 (2000).
6 Monk, I. R., Shah, I. M., Xu, M., Tan, M. W. \& Foster, T. J. Transforming the untransformable: application of direct transformation to manipulate genetically Staphylococcus aureus and Staphylococcus epidermidis. MBio 3, doi:10.1128/mBio.00277-11 (2012).
7 Helle, L. et al. Vectors for improved Tet repressor-dependent gradual gene induction or silencing in Staphylococcus aureus. Microbiology (Reading, England) 157, 33143323, doi:10.1099/mic.0.052548-0 (2011).
8 Tabor, S. \& Richardson, C. C. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proceedings of the National Academy of Sciences of the United States of America 82, 1074-1078 (1985).
9 Karimova, G., Pidoux, J., Ullmann, A. \& Ladant, D. A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proceedings of the National Academy of Sciences of the United States of America 95, 5752-5756 (1998).
10 Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic acids research 25, 3389-3402 (1997).
11 Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular systems biology 7, 539, doi:10.1038/msb. 2011.75 (2011).
12 Korczynska, J. E., Turkenburg, J. P. \& Taylor, E. J. The structural characterization of a prophage-encoded extracellular DNase from Streptococcus pyogenes. Nucleic acids research 40, 928-938, doi:10.1093/nar/gkr789 (2012).

[^0]: pT25-SAEMRSA15_02580
 GGATCCCACTTTCGAAGAAAAACTAAGTCAAATGTACAACGAGATTGCGAATGAGATTA GCAGCATGATACCAGTAGAGTGGGAAAAGGTATATGTAATTGCCTATGTAGATGATGGA GGTGGAGAGGTCATTTTTAATTATACTAAACCAGGTAGCGATGAATTGAATTATTACACA TATATCCCTAGAGAGTATAATGTCTCTGAAAAAGTATTTTATGATTTGTGGACGGATTTAT ATAGATTGTTTAAGAAGTTAAGAAATGCATTTAAAGAAGAAGGACTTGAACCATGGACAT CATGTGAATTTGACTTTGCAAGAGATGGCAAATTAAATGTATCTTTTGATTATATTGATTG GGTAAATACAGAGTTTGATCAATTGGGCCGTGAAAACTATTATATGTATAAAAAGTTTGG TGTTTTACCAGAAACGGAATATGAAATGGAAGAAATTCGAGCAGTAGAGAAGTATGTTA AAGAGCAAGAGGGTACC

