221 research outputs found

    Role of cellular senescence and NOX4-mediated oxidative stress in systemic sclerosis pathogenesis.

    Get PDF
    Systemic sclerosis (SSc) is a systemic autoimmune disease characterized by progressive fibrosis of skin and numerous internal organs and a severe fibroproliferative vasculopathy resulting frequently in severe disability and high mortality. Although the etiology of SSc is unknown and the detailed mechanisms responsible for the fibrotic process have not been fully elucidated, one important observation from a large US population study was the demonstration of a late onset of SSc with a peak incidence between 45 and 54 years of age in African-American females and between 65 and 74 years of age in white females. Although it is not appropriate to consider SSc as a disease of aging, the possibility that senescence changes in the cellular elements involved in its pathogenesis may play a role has not been thoroughly examined. The process of cellular senescence is extremely complex, and the mechanisms, molecular events, and signaling pathways involved have not been fully elucidated; however, there is strong evidence to support the concept that oxidative stress caused by the excessive generation of reactive oxygen species may be one important mechanism involved. On the other hand, numerous studies have implicated oxidative stress in SSc pathogenesis, thus, suggesting a plausible mechanism in which excessive oxidative stress induces cellular senescence and that the molecular events associated with this complex process play an important role in the fibrotic and fibroproliferative vasculopathy characteristic of SSc. Here, recent studies examining the role of cellular senescence and of oxidative stress in SSc pathogenesis will be reviewed

    Is dignity therapy feasible to enhance the end of life experience for people with motor neurone disease and their family carers?

    Get PDF
    Background: Development of interventions that address psychosocial and existential distress in people with motor neurone disease (MND) or that alleviate caregiver burden in MND family carers have often been suggested in the research literature. Dignity therapy, which was developed to reduce psychosocial and existential distress at the end of life, has been shown to benefit people dying of cancer and their families. These results may not be transferable to people with MND. The objectives of this study are to assess the feasibility, acceptability and potential effectiveness of dignity therapy to enhance the end of life experience for people with motor neurone disease and their family carers. Methods/design: This is a cross-sectional study utilizing a single treatment group and a pre/post test design. The study population will comprise fifty people diagnosed with MND and their nominated family carers. Primarily quantitative outcomes will be gathered through measures assessed at baseline and at approximately one week after the intervention. Outcomes for participants include hopefulness, spirituality and dignity. Outcomes for family carers include perceived caregiver burden, hopefulness and anxiety/depression. Feedback and satisfaction with the intervention will be gathered through a questionnaire. Discussion: This detailed research will explore if dignity therapy has the potential to enhance the end of life experience for people with MND and their family carers, and fill a gap for professionals who are called on to address the spiritual, existential and psychosocial needs of their MND patients and families

    Ce-Duox1/BLI-3 Generated Reactive Oxygen Species Trigger Protective SKN-1 Activity via p38 MAPK Signaling during Infection in C. elegans

    Get PDF
    Infected animals will produce reactive oxygen species (ROS) and other inflammatory molecules that help fight pathogens, but can inadvertently damage host tissue. Therefore specific responses, which protect and repair against the collateral damage caused by the immune response, are critical for successfully surviving pathogen attack. We previously demonstrated that ROS are generated during infection in the model host Caenorhabditis elegans by the dual oxidase Ce-Duox1/BLI-3. Herein, an important connection between ROS generation by Ce-Duox1/BLI-3 and upregulation of a protective transcriptional response by SKN-1 is established in the context of infection. SKN-1 is an ortholog of the mammalian Nrf transcription factors and has previously been documented to promote survival, following oxidative stress, by upregulating genes involved in the detoxification of ROS and other reactive compounds. Using qRT-PCR, transcriptional reporter fusions, and a translational fusion, SKN-1 is shown to become highly active in the C. elegans intestine upon exposure to the human bacterial pathogens, Enterococcus faecalis and Pseudomonas aeruginosa. Activation is dependent on the overall pathogenicity of the bacterium, demonstrated by a weakened response observed in attenuated mutants of these pathogens. Previous work demonstrated a role for p38 MAPK signaling both in pathogen resistance and in activating SKN-1 upon exposure to chemically induced oxidative stress. We show that NSY-1, SEK-1 and PMK-1 are also required for SKN-1 activity during infection. Evidence is also presented that the ROS produced by Ce-Duox1/BLI-3 is the source of SKN-1 activation via p38 MAPK signaling during infection. Finally, for the first time, SKN-1 activity is shown to be protective during infection; loss of skn-1 decreases resistance, whereas increasing SKN-1 activity augments resistance to pathogen. Overall, a model is presented in which ROS generation by Ce-Duox1/BLI-3 activates a protective SKN-1 response via p38 MAPK signaling

    The consolidation of implicit sequence memory in obstructive sleep apnea

    Get PDF
    Obstructive Sleep Apnea (OSA) Syndrome is a relatively frequent sleep disorder characterized by disrupted sleep patterns. It is a well-established fact that sleep has beneficial effect on memory consolidation by enhancing neural plasticity. Implicit sequence learning is a prominent component of skill learning. However, the formation and consolidation of this fundamental learning mechanism remains poorly understood in OSA. In the present study we examined the consolidation of different aspects of implicit sequence learning in patients with OSA. We used the Alternating Serial Reaction Time task to measure general skill learning and sequence-specific learning. There were two sessions: a learning phase and a testing phase, separated by a 10-hour offline period with sleep. Our data showed differences in offline changes of general skill learning between the OSA and control group. The control group demonstrated offline improvement from evening to morning, while the OSA group did not. In contrast, we did not observe differences between the groups in offline changes in sequence-specific learning. Our findings suggest that disrupted sleep in OSA differently affects neural circuits involved in the consolidation of sequence learning

    Oxidative Stress and Vascular Function: Implications for Pharmacologic Treatments

    Get PDF
    Production of considerable amounts of reactive oxygen species (ROS) eventually leads to oxidative stress. A key role of oxidative stress is evident in the pathologic mechanisms of endothelial dysfunction and associated cardiovascular diseases. Vascular enzymes such as NADPH oxidases, xanthine oxidase, and uncoupled endothelial nitric oxide synthase are involved in the production of ROS. The question remains whether pharmacologic approaches can effectively combat the excessive ROS production in the vasculature. Interestingly, existing registered cardiovascular drugs can directly or indirectly act as antioxidants, thereby preventing the damaging effects of ROS. Moreover, new compounds targeting NADPH oxidases have been developed. Finally, food-derived compounds appear to be effective inhibitors of oxidative stress and preserve vascular function

    The requirements and challenges in preventing of road traffic injury in Iran. A qualitative study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Road traffic injuries (RTIs) are a major public health problem, especially in low- and middle-income countries. Among middle-income countries, Iran has one of the highest mortality rates from RTIs. Action is critical to combat this major public health problem. Stakeholders involved in RTI control are of key importance and their perceptions of barriers and facilitators are a vital source of knowledge. The aim of this study was to explore barriers to the prevention of RTIs and provide appropriate suggestions for prevention, based on the perceptions of stakeholders, victims and road-users as regards RTIs.</p> <p>Methods</p> <p>Thirty-eight semi-structured interviews were conducted with informants in the field of RTI prevention including: police officers; public health professionals; experts from the road administrators; representatives from the General Governor, the car industry, firefighters; experts from Emergency Medical Service and the Red Crescent; and some motorcyclists and car drivers as well as victims of RTIs. A qualitative approach using grounded theory method was employed to analyze the material gathered.</p> <p>Results</p> <p>The core variable was identified as "The lack of a system approach to road-user safety". The following barriers in relation to RTI prevention were identified as: human factors; transportation system; and organizational coordination. Suggestions for improvement included education (for the general public and targeted group training), more effective legislation, more rigorous law enforcement, improved engineering in road infrastructure, and an integrated organization to supervise and coordinate preventive activities.</p> <p>Conclusion</p> <p>The major barriers identified in this study were human factors and efforts to change human behaviour were suggested by means of public education campaigns and stricter law enforcement. However, the lack of a system approach to RTI prevention was also an important concern. There is an urgent need for both an integrated system to coordinate RTI activities and prevention and a major change in stakeholders' attitudes towards RTI prevention. The focus of all activities should take place on road users' safety.</p

    Are we HER-ting for innovation in neoadjuvant breast cancer trial design?

    Get PDF
    Through the use of surrogate markers of efficacy, neoadjuvant studies may facilitate the implementation of new treatments into clinical practice. However, disease-free survival is the current standard outcome endpoint for registration of a novel treatment. The coupling of smaller neoadjuvant 'proof of principle' studies with larger adjuvant registration trials offers the promise of speeding up the time to market of new therapies. Clever new designs, such as the 'biological window' and 'learn on the way', can provide valuable insight regarding mechanisms of action and resistance of these novel drugs by identifying patients who are most likely to respond to a novel therapy early in the drug development process. Using the ongoing neoadjuvant trials with HER2 (human epidermal growth factor receptor 2)-directed therapy as a paradigm, this article discusses recent innovations in study design and the challenges of conducting translational research in the neoadjuvant setting

    Pattern Classification of Working Memory Networks Reveals Differential Effects of Methylphenidate, Atomoxetine, and Placebo in Healthy Volunteers

    Get PDF
    Stimulant and non-stimulant drugs can reduce symptoms of attention deficit/hyperactivity disorder (ADHD). The stimulant drug methylphenidate (MPH) and the non-stimulant drug atomoxetine (ATX) are both widely used for ADHD treatment, but their differential effects on human brain function remain unclear. We combined event-related fMRI with multivariate pattern recognition to characterize the effects of MPH and ATX in healthy volunteers performing a rewarded working memory (WM) task. The effects of MPH and ATX on WM were strongly dependent on their behavioral context. During non-rewarded trials, only MPH could be discriminated from placebo (PLC), with MPH producing a similar activation pattern to reward. During rewarded trials both drugs produced the opposite effect to reward, that is, attenuating WM networks and enhancing task-related deactivations (TRDs) in regions consistent with the default mode network (DMN). The drugs could be directly discriminated during the delay component of rewarded trials: MPH produced greater activity in WM networks and ATX produced greater activity in the DMN. Our data provide evidence that: (1) MPH and ATX have prominent effects during rewarded WM in task-activated and -deactivated networks; (2) during the delay component of rewarded trials, MPH and ATX have opposing effects on activated and deactivated networks: MPH enhances TRDs more than ATX, whereas ATX attenuates WM networks more than MPH; and (3) MPH mimics reward during encoding. Thus, interactions between drug effects and motivational state are crucial in defining the effects of MPH and ATX

    Tracking CNS and systemic sources of oxidative stress during the course of chronic neuroinflammation

    Get PDF
    The functional dynamics and cellular sources of oxidative stress are central to understanding MS pathogenesis but remain elusive, due to the lack of appropriate detection methods. Here we employ NAD(P)H fluorescence lifetime imaging to detect functional NADPH oxidases (NOX enzymes) in vivo to identify inflammatory monocytes, activated microglia, and astrocytes expressing NOX1 as major cellular sources of oxidative stress in the central nervous system of mice affected by experimental autoimmune encephalomyelitis (EAE). This directly affects neuronal function in vivo, indicated by sustained elevated neuronal calcium. The systemic involvement of oxidative stress is mirrored by overactivation of NOX enzymes in peripheral CD11b(+) cells in later phases of both MS and EAE. This effect is antagonized by systemic intake of the NOX inhibitor and anti-oxidant epigallocatechin-3-gallate. Together, this persistent hyper-activation of oxidative enzymes suggests an "oxidative stress memory" both in the periphery and CNS compartments, in chronic neuroinflammation
    corecore