75 research outputs found

    Frontal Bone Remodeling for Gender Reassignment of the Male Forehead: A Gender-Reassignment Surgery

    Get PDF
    Gender-reassignment therapy, especially for reshaping of the forehead, can be an effective treatment to improve self-esteem. Contouring of the cranial vault, especially of the forehead, still is a rarely performed surgical procedure for gender reassignment. In addition to surgical bone remodeling, several materials have been used for remodeling and refinement of the frontal bone. But due to shortcomings of autogenous bone material and the disadvantages of polyethylene or methylmethacrylate, hydroxyapatite cement (HAC) composed of tetracalcium phosphate and dicalcium phosphate seems to be an alternative. This study aimed to analyze the clinical outcome after frontal bone remodeling with HAC for gender male-to-female reassignment. The 21 patients in the study were treated for gender reassignment of the male frontal bone using HAC. The average age of these patients was 33.4 years (range, 21–42 years). The average volume of HAC used per patient was 3.83 g. The authors’ clinical series demonstrated a satisfactory result. The surgery was easy to perform, and HAC was easy to apply and shape to suit individual needs. Overall satisfaction was very high. Therefore, HAC is a welcome alternative to the traditional use of autogenous bone graft for correction of cranial vault irregularities

    Evolutionary origin of rhizobium Nod factor signaling

    No full text
    For over two decades now, it is known that the nodule symbiosis between legume plants and nitrogen fixing rhizobium bacteria is set in motion by the bacterial signal molecule named nodulation (Nod) factor.1 Upon Nod factor perception a signaling cascade is activated that is also essential for endomycorrhizal symbiosis (Fig. 1). This suggests that rhizobium co-opted the evolutionary far more ancient mycorrhizal signaling pathway in order to establish an endosymbiotic interaction with legumes.2 As arbuscular mycorrhizal fungi of the Glomeromycota phylum can establish a symbiosis with the vast majority of land plants, it is most probable that this signaling cascade is wide spread in the plant kingdom.3 However, Nod factor perception generally is considered to be unique to legumes. Two recent breakthroughs on the evolutionary origin of rhizobium Nod factor signaling demonstrate that this is not the case.4,5 The purification of Nod factor-like molecules excreted by the mycorrhizal fungus Glomus intraradices and the role of the LysM-type Nod factor receptor PaNFP in the non-legume Parasponia andersonii provide novel understanding on the evolution of rhizobial Nod factor signaling

    High nitrogen contribution by Gunnera magellanica

    No full text
    Chronosequences at the forefront of retreating glaciers provide information about colonization rates of bare surfaces. In the northern hemisphere, forest development can take centuries, with rates often limited by low nutrient availability. By contrast, in front of the retreating Pia Glacier (Tierra del Fuego, Chile), a Nothofagus forest is in place after only 34 yr of development, while total soil nitrogen (N) increased from near zero to 1.5%, suggesting a strong input of this nutrient. We measured N-fixation rates, carbon fluxes, leaf N and phosphorus contents and leaf δ15N in the dominant plants, including the herb Gunnera magellanica, which is endosymbiotically associated with a cyanobacterium, in order to investigate the role of N-fixing and mycorrhizal symbionts in N-budgets during successional transition. G. magellanica presented some of the highest nitrogenase activities yet reported (potential maximal contribution of 300 kg N ha−1 yr−1). Foliar δ15N results support the framework of a highly efficient N-uptake and transfer system based on mycorrhizas, with c. 80% of N taken up by the mycorrhizas potentially transferred to the host plant. Our results suggest the symbiosis of G. magellanica with cyanobacteria, and trees and shrubs with mycorrhizas, to be the key processes driving this rapid successioncyanobacteriaMinisterio de Economía y Competitividad (España)Depto. de Farmacología, Farmacognosia y BotánicaFac. de FarmaciaTRUEpu
    corecore