29 research outputs found

    Meta-analysis of the detection of plant pigment concentrations using hyperspectral remotely sensed data

    Get PDF
    Passive optical hyperspectral remote sensing of plant pigments offers potential for understanding plant ecophysiological processes across a range of spatial scales. Following a number of decades of research in this field, this paper undertakes a systematic meta-analysis of 85 articles to determine whether passive optical hyperspectral remote sensing techniques are sufficiently well developed to quantify individual plant pigments, which operational solutions are available for wider plant science and the areas which now require greater focus. The findings indicate that predictive relationships are strong for all pigments at the leaf scale but these decrease and become more variable across pigment types at the canopy and landscape scales. At leaf scale it is clear that specific sets of optimal wavelengths can be recommended for operational methodologies: total chlorophyll and chlorophyll a quantification is based on reflectance in the green (550–560nm) and red edge (680–750nm) regions; chlorophyll b on the red, (630–660nm), red edge (670–710nm) and the near-infrared (800–810nm); carotenoids on the 500–580nm region; and anthocyanins on the green (550–560nm), red edge (700–710nm) and near-infrared (780–790nm). For total chlorophyll the optimal wavelengths are valid across canopy and landscape scales and there is some evidence that the same applies for chlorophyll a

    Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods

    Get PDF
    An unprecedented spectroscopic data stream will soon become available with forthcoming Earth-observing satellite missions equipped with imaging spectroradiometers. This data stream will open up a vast array of opportunities to quantify a diversity of biochemical and structural vegetation properties. The processing requirements for such large data streams require reliable retrieval techniques enabling the spatiotemporally explicit quantification of biophysical variables. With the aim of preparing for this new era of Earth observation, this review summarizes the state-of-the-art retrieval methods that have been applied in experimental imaging spectroscopy studies inferring all kinds of vegetation biophysical variables. Identified retrieval methods are categorized into: (1) parametric regression, including vegetation indices, shape indices and spectral transformations; (2) nonparametric regression, including linear and nonlinear machine learning regression algorithms; (3) physically based, including inversion of radiative transfer models (RTMs) using numerical optimization and look-up table approaches; and (4) hybrid regression methods, which combine RTM simulations with machine learning regression methods. For each of these categories, an overview of widely applied methods with application to mapping vegetation properties is given. In view of processing imaging spectroscopy data, a critical aspect involves the challenge of dealing with spectral multicollinearity. The ability to provide robust estimates, retrieval uncertainties and acceptable retrieval processing speed are other important aspects in view of operational processing. Recommendations towards new-generation spectroscopy-based processing chains for operational production of biophysical variables are given

    Beyond NDVI: Extraction of biophysical variables from remote sensing imagery

    No full text
    This chapter provides an overview of methods used for the extraction of biophysical vegetation variables from remote sensing imagery. It starts with the description of the main spectral regions in the optical window of the electromagnetic spectrum based on typical spectral signatures of land surfaces. Subsequently, the merit and problems of using radiative transfer models to describe the relationship between spectral measurements and biophysical and chemical variables of vegetation are described. Next, the use of statistical methods by means of vegetation indices for the same purpose gets attention. An overview of different types of indices is given without having the ambition in being exhaustive. Subsequently, an overview is provided of the biogeophysical vegetation variables that can directly be estimated from optical remote sensing observations, with emphasis on using vegetation indices. These vegetation variables are: (1) chlorophyll and nitrogen, (2) vegetation cover fraction and fAPAR, (3) leaf area index, and (4) canopy water. Finally, an outlook for a major research direction in the near future in this context is provided

    A novel red-edge spectral index for retrieving the leaf chlorophyll content

    Full text link
    The leaf chlorophyll content (Chlleaf) is a crucial vegetation parameter in carbon cycle modelling and agricultural monitoring at local, regional and global scales. The red-edge spectral region is sensitive to variations in Chlleaf. An increasing number of sensors are capable of sampling red-edge bands, providing opportunities to estimate Chlleaf. However, the contributions of canopy/foliar/soil factors are always combined in the reflectance signal, which limits the generalizability of vegetation index (VI)-based Chlleaf inversions. This study aims to propose a new red-edge chlorophyll index to decouple the effects of the canopy and soil background from the Chlleaf estimation. The chlorophyll sensitive index (CSI) was proposed, and the regression equations between the CSI and Chlleaf were acquired using PROSAIL (PROSPECT + SAIL) and the 4-Scale-PROSPECT model. Sensitivity analyses showed that the CSI is resistant to variations in the canopy structure and soil background. Validation results obtained using 308 ground-measured samples over nine sites world-wide revealed that CSI improves the Chlleaf retrieval accuracy (root mean square error (RMSE = 9.39 ÎŒg cm−2) compared with the existing Medium Resolution Imaging Spectrometer (MERIS) terrestrial chlorophyll index (MTCI; RMSE = 13.00 ÎŒg cm−2). Moreover, the CSI method steadily achieves a highly accurate inversion under different LAI and Chlleaf conditions. Based on the CSI regression method, a Chlleaf product with a 30-m/10-day resolution across China was generated. The CSI is sensitive to Chlleaf but resistant to canopy structure and soil moisture parameters, and it has the potential to explicitly retrieve leaf-scale biochemistry in ecosystem modelling and ecological applications

    MERIS: the re-branding of an ocean sensor

    No full text
    MERIS (Medium Resolution Imaging Spectrometer) is a fine spectral and medium spatial resolution satellite sensor and is part of the core instrument payload of Envisat, the European Space Agency's (ESA) environmental research satellite, launched in March 2002. Designed primarily for ocean (‘MER’) and coastal zone remote sensing, this imaging spectrometer (‘IS’) now has a much broader environmental remit covering also land and atmospheric applications. This paper reviews (i) MERIS's development history, focusing on its changing mission objectives; (ii) MERIS's technical specification, including its radiometric, spectral and geometric characteristics, programmability and onboard calibration; (iii) decisions that led to modifications of MERIS's spectral, geometric and radiometric performance for land applications; (iv) MERIS's data products; and (v) some of the ways in which MERIS data might be used to provide information on terrestrial vegetation.<br/
    corecore