28 research outputs found

    Differential gene expression profile in the small intestines of mice lacking pacemaker interstitial cells of Cajal

    Get PDF
    BACKGROUND: We previously identified eight known and novel genes differentially expressed in the small intestines of wild type and W/W(V )mice, which have greatly reduced populations of the interstitial cells of Cajal, that are responsible for the generation of electrical slow waves, by using a differential gene display method. METHODS: By using the same method we isolated additional candidate genes that were specifically down- or up-regulated in W/W(V )mice. Novel transcripts were designated as DDWMEST. RESULTS: We isolated seven candidates that were specifically down- or up-regulated in W/W(V )mice. Two novel transcripts, DDWMEST 1 and -91 were increased in both fed and fasted W/W(V )mice. Expression of another five genes was suppressed in W/W(V )mice: ARG2 (Arginase II), ONZIN (encoding leukemia inhibitory factor regulated protein), and three novel transcripts: DDWMEST62, -84, and -100. Together with the previous report, we identified fifteen differentially expressed genes in total in the small intestines of W/W(V )mice. Eight of these genes were reduced in the jejunums of W/W(V )mice compared to age matched wild type mice, whereas the other seven genes showed an increase in expression. Differential expression was the same in fasted and fed animals, suggesting that the differences were independent of the dietetic state of the animal. CONCLUSIONS: Several known and novel genes are differentially expressed in the small intestines of W/W(V )mice. Differential gene comparison might contribute to our understanding of motility disorders associated with the loss of the interstitial cells of Cajal

    Mutations in NOTCH1 Cause Adams-Oliver Syndrome

    Full text link
    © 2014 The American Society of Human Genetics Notch signaling determines and reinforces cell fate in multicellular eukaryotes. Despite the involvement of Notch in many key developmental systems, human mutations in Notch signaling components have mainly been described in disorders with vascular and bone effects. Here, we report five heterozygous NOTCH1 variants in unrelated individuals with Adams-Oliver syndrome (AOS), a rare disease with major features of aplasia cutis of the scalp and terminal transverse limb defects. Using whole-genome sequencing in a cohort of 11 families lacking mutations in the four genes with known roles in AOS pathology (ARHGAP31, RBPJ, DOCK6, and EOGT), we found a heterozygous de novo 85 kb deletion spanning the NOTCH1 5′ region and three coding variants (c.1285T>C [p.Cys429Arg], c.4487G>A [p.Cys1496Tyr], and c.5965G>A [p.Asp1989Asn]), two of which are de novo, in four unrelated probands. In a fifth family, we identified a heterozygous canonical splice-site variant (c.743−1 G>T) in an affected father and daughter. These variants were not present in 5,077 in-house control genomes or in public databases. In keeping with the prominent developmental role described for Notch1 in mouse vasculature, we observed cardiac and multiple vascular defects in four of the five families. We propose that the limb and scalp defects might also be due to a vasculopathy in NOTCH1-related AOS. Our results suggest that mutations in NOTCH1 are the most common cause of AOS and add to a growing list of human diseases that have a vascular and/or bony component and are caused by alterations in the Notch signaling pathway

    Diagnostic And Management Practices for Phenylketonuria iin 19 Countries of The South And Eastern European Region: Survey Results

    Get PDF
    To avoid potentially severe outcomes, phenylketonuria (PKU) must be detected as soon as possible after birth and managed with life-long treatment. A questionnaire-based survey was performed to document diagnosis and management practices for PKU in a region of Southern and Eastern Europe. Prevalence and management data were obtained from 37/59 (63 %) centres within 19/22 (86 %) contacted countries (N = 8600 patients). The main results’ analysis was based on completed questionnaires obtained from 31 centres (53 %) within 15 countries (68 %). A median of 10 % of patients per centre had been diagnosed after the newborn period. Metabolic dieticians and specialised adult PKU clinics were lacking in 36 and 84 % of centres, respectively. In 26 % of centres, treatment initiation was delayed until >15 days of life. Blood phenylalanine (Phe) thresholds to start treatment and upper Phe targets were inconsistent across centres. Ten percent of centres reported monitoring Phe every 2 weeks for pregnant women with PKU, which is insufficient to minimise risk of neonatal sequalae. Sapropterin dihydrochloride treatment was available in 48 % of centres, with 24-h responsiveness tests most common (36 %). Only one centre among the five countries lacking newborn screening provided a completed questionnaire., Conclusion: Targeted efforts by health care professionals and governments are needed to optimise diagnostic and management approaches for PKU in Southern and Eastern Europe.“What is Known”• PKU must be detected early and optimally managed throughout life to avoid poor outcomes, yet newborn screening is not universal and diagnostic and management practices for PKU are known to vary widely between different centres and countries. • Targeted efforts by health care professionals and governments are needed to optimise diagnostic and management approaches. “What is New”• PKU management practices are documented in 19 South and Eastern European countries indicating a heterogeneous situation across the region. • Key areas for improvement identified in surveyed centres include a need for comprehensive screening in all countries, increased number of metabolic dietitians and specialised adult PKU clinics, delayed time to treatment initiation, appropriate Phe thresholds, Phe targets and monitoring frequencies, and universal access to currently available treatment options.PubMedWoSScopu
    corecore