38 research outputs found

    Growth-inhibitory and cell cycle-arresting properties of the rice bran constituent tricin in human-derived breast cancer cells in vitro and in nude mice in vivo

    Get PDF
    Tricin, a flavone found in rice bran, inhibits the growth of human-derived malignant MDA-MB-468 breast tumour cells at submicromolar concentrations. As part of the exploration of tricin as a potential cancer chemopreventive agent, we investigated the duration and cell cycle specificity of growth inhibition elicited by tricin in vitro and the effect of tricin on the development of MDA-MB-468 tumours grown in immune-compromised MF-1 mice in vivo. Preincubation of MDA-MB-468 cells with tricin (1-40 microM) for 72 h compromised cell growth after tricin removal, and such irreversibility was not observed in human breast-derived nonmalignant HBL-100 cells. Tricin (>/=5 microM) arrested MDA-MB-468 cells in the G2/M phase of the cell cycle without inducing apoptosis as adjudged by annexin V staining. In nude mice consumption of tricin with the diet (0.2%, w w(-1)) from 1 week prior to MDA-MB-468 cell implantation failed to impede tumour development. Steady-state levels of tricin in plasma, breast tumour tissue and intestinal mucosa, as measured by HPLC, were 0.13 microM and 0.11 and 63 nmol g(-1), respectively. Cells were exposed to tricin (0.11, 1.1 or 11 microM) in vitro for 72 h and then implanted into mice. The volume of tumours in animals bearing cells pre-exposed to 11 microM tricin was less than a third of that in mice with control cells, while tumours from cells incubated with 0.1 or 1.1 microM tricin were indistinguishable from controls. These results suggest that the potent breast tumour cell growth-inhibitory activity of tricin in vitro does not directly translate into activity in the nude mouse bearing the MDA MB-468 tumour. While the results do not support the notion that tricin is a promising candidate for breast cancer chemoprevention, its high levels in the gastrointestinal tract after dietary intake render exploration of its ability to prevent colorectal carcinogenesis propitious

    Development and characterization of a novel C-terminal inhibitor of Hsp90 in androgen dependent and independent prostate cancer cells

    Get PDF
    Background: The molecular chaperone, heat shock protein 90 (Hsp90) has been shown to be overexpressed in a number of cancers, including prostate cancer, making it an important target for drug discovery. Unfortunately, results with N-terminal inhibitors from initial clinical trials have been disappointing, as toxicity and resistance resulting from induction of the heat shock response (HSR) has led to both scheduling and administration concerns. Therefore, Hsp90 inhibitors that do not induce the heat shock response represent a promising new direction for the treatment of prostate cancer. Herein, the development of a C-terminal Hsp90 inhibitor, KU174, is described, which demonstrates anti-cancer activity in prostate cancer cells in the absence of a HSR and describe a novel approach to characterize Hsp90 inhibition in cancer cells.Methods: PC3-MM2 and LNCaP-LN3 cells were used in both direct and indirect in vitro Hsp90 inhibition assays (DARTS, Surface Plasmon Resonance, co-immunoprecipitation, luciferase, Western blot, anti-proliferative, cytotoxicity and size exclusion chromatography) to characterize the effects of KU174 in prostate cancer cells. Pilot in vivo efficacy studies were also conducted with KU174 in PC3-MM2 xenograft studies.Results: KU174 exhibits robust anti-proliferative and cytotoxic activity along with client protein degradation and disruption of Hsp90 native complexes without induction of a HSR. Furthermore, KU174 demonstrates direct binding to the Hsp90 protein and Hsp90 complexes in cancer cells. In addition, in pilot in-vivo proof-of-concept studies KU174 demonstrates efficacy at 75 mg/kg in a PC3-MM2 rat tumor model.Conclusions: Overall, these findings suggest C-terminal Hsp90 inhibitors have potential as therapeutic agents for the treatment of prostate cancer.Peer reviewedBiochemistry and Molecular Biolog

    Fingerprinting of neurotoxic compounds using a mouse embryonic stem cell dual luminescence reporter assay

    Get PDF

    Pharmacokinetics in mice implanted with xenografted tumors after intravenous administration of tasidotin (ILX651) or its carboxylate metabolite

    No full text
    The pharmacokinetics of tasidotin (ILX651), a depsipeptide currently in phase II for the treatment of advanced solid tumors, and tasidotin-C-carboxylate, the main metabolite, were characterized in male nude mice implanted with LOX tumors, which are sensitive to tasidotin, or H460 tumors, which are resistant to tasidotin. The pharmacokinetics of tasidotin and its metabolites were characterized after singledose administration of tasidotin (20 and 120 mg/kg), tasidotin-C-carboxylate (150 mg/kg), or tasidotin (53 mg/kg) in the presence and absence of Z-prolyl prolinal (5 mg/kg administered 1 hour prior to tasidotin administration), a competitive antagonist of prolyl oligopeptidase, the enzyme responsible for the metabolism of tasidotin to tasidotin-C-carboxylate. A secondary study was done comparing tumor growth in tasidotin-treated mice with implanted LOX tumors in the presence and absence of Z-prolyl-prolinal. After tasidotin administration, the pharmacokinetics of tasidotin and tasidotin-C-carboxylate were similar in plasma and tumors in LOX- and H460-implanted mice, indicating the resistance was not due to pharmacokinetic factors. Tumor carboxylate concentrations were much higher than in plasma after tasidotin administration. The metabolite appeared to contribute ∼17% to 33% to the total exposure in LOX tumors and 20% to 49% in H460 tumors but <5% in plasma. Less than 5% of the administered tasidotin dose was converted to tasidotin-C-carboxylate, with no apparent differences between LOX- and H460-treated animals. The presence of Z-prolyl-prolinal decreased the amount of tasidotin converted to tasidotin-C-carboxylate from 5.5% to 0.90%, a reduction of almost 80%. After tasidotin-C-carboxylate administration, the half-life was on the order of minutes compared with hours when observed after tasidotin administration. Tasidotin-C-carboxylate elimination was not dependent on tasidotin pharmacokinetics, suggesting that the rate of efflux from cells into plasma was the rate-limiting step in its elimination. Tasidotin-C-carboxylate was also further metabolized to desprolyl-tasidotin-C-carboxylate, although the metabolite ratios were <10%. Pretreatment with Z-prolyl-prolinal completely abolished the antitumor activity of tasidotin, indicating that the metabolite is the main moiety responsible for activity and that, despite tasidotin itself having activity in vitro, tasidotin is acting mainly as a prodrug
    corecore