48 research outputs found

    Guidelines for ex vivo mechanical testing of tendon.

    Get PDF
    Tendons are critical for the biomechanical function of joints. Tendons connect muscles to bones and allow for the transmission of muscle forces to facilitate joint motion. Therefore, characterizing the tensile mechanical properties of tendons is important for the assessment of functional tendon health and efficacy of treatments for acute and chronic injuries. In this guidelines paper, we review methodological considerations, testing protocols, and key outcome measures for mechanical testing of tendons. The goal of the paper is to present a simple set of guidelines to the non-expert seeking to perform tendon mechanical tests. The suggested approaches provide rigorous and consistent methodologies for standardized biomechanical characterization of tendon and reporting requirements across laboratories. This article is protected by copyright. All rights reserved

    Human bone marrow mesenchymal stem cells : a systematic reappraisal via the genostem experience

    Get PDF
    Genostem (acronym for “Adult mesenchymal stem cells engineering for connective tissue disorders. From the bench to the bed side”) has been an European consortium of 30 teams working together on human bone marrow Mesenchymal Stem Cell (MSC) biological properties and repair capacity. Part of Genostem activity has been dedicated to the study of basic issues on undifferentiated MSCs properties and on signalling pathways leading to the differentiation into 3 of the connective tissue lineages, osteoblastic, chondrocytic and tenocytic. We have evidenced that native bone marrow MSCs and stromal cells, forming the niche of hematopoietic stem cells, were the same cellular entity located abluminally from marrow sinus endothelial cells. We have also shown that culture-amplified, clonogenic and highly-proliferative MSCs were bona fide stem cells, sharing with other stem cell types the major attributes of self-renewal and of multipotential priming to the lineages to which they can differentiate (osteoblasts, chondrocytes, adipocytes and vascular smooth muscle cells/pericytes). Extensive transcription profiling and in vitro and in vivo assays were applied to identify genes involved in differentiation. Thus we have described novel factors implicated in osteogenesis (FHL2, ITGA5, Fgf18), chondrogenesis (FOXO1A) and tenogenesis (Smad8). Another part of Genostem activity has been devoted to studies of the repair capacity of MSCs in animal models, a prerequisite for future clinical trials. We have developed novel scaffolds (chitosan, pharmacologically active microcarriers) useful for the repair of both bone and cartilage. Finally and most importantly, we have shown that locally implanted MSCs effectively repair bone, cartilage and tendonWork supported by the European Community (Key action 1.2.4-3 Integrated Project Genostem, contract No 503161)

    Natural environments, ancestral diets, and microbial ecology: is there a modern “paleo-deficit disorder”? Part II

    Get PDF

    Substrate fiber alignment mediates tendon cell response to inflammatory signaling

    No full text
    \u3cp\u3eHealthy tendon tissue features a highly aligned extracellular matrix that becomes disorganized with disease. Recent evidence suggests that inflammation coexists with early degenerative changes in tendon, and that crosstalk between immune-cells and tendon fibroblasts (TFs) can contribute to poor tissue healing. We hypothesized that a disorganized tissue architecture may predispose tendon cells to degenerative extracellular matrix remodeling pathways, particularly within a pro-inflammatory niche. This hypothesis was tested by analyzing human TFs cultured on electrospun polycaprolactone (PCL) mats with either highly aligned or randomly oriented fiber structures. We confirmed that fibroblast morphology, phenotype, and markers of matrix turnover could be significantly affected by matrix topography. More strikingly, the TF response to paracrine signals from polarized macrophages or by stimulation with pro-inflammatory cytokines featured significant downregulation of signaling related to extracellular synthesis, with significant concomitant upregulation of gene and protein expression of matrix degrading enzymes. Critically, this tendency towards degenerative re-regulation was exacerbated on randomly oriented PCL substrates. These novel findings indicate that highly aligned tendon cell scaffolds not only promote tendon matrix synthesis, but also play a previously unappreciated role in mitigating adverse resident fibroblast response within an inflammatory milieu. Statement of Significance: Use of biomaterial scaffolds for tendon repair often results in tissue formation characteristic of scar tissue, rather than the highly aligned type-1 collagen matrix of healthy tendons. We hypothesized that non-optimal biomaterial surfaces may play a role in these outcomes, specifically randomly oriented biomaterial surfaces that unintentionally mimic structure of pathological tendon. We observed that disorganized scaffold surfaces do adversely affect early cell attachment and gene expression. We further identified that disorganized fiber surfaces can prime tendon cells toward pro-inflammatory signaling. These findings represent provocative evidence unstructured fiber surfaces may underlie inflammatory responses that drive aberrant collagen matrix turnover. This work could be highly relevant for the design of cell instructive biomaterial therapies that yield positive clinical outcomes.\u3c/p\u3

    Notch-inducing hydrogels reveal a perivascular switch of mesenchymal stem cell fate

    No full text
    The fate of mesenchymal stem cells (MSCs) in the perivascular niche, as well as factors controlling their fate, is poorly understood. Here, we study MSCs in the perivascular microenvironment of endothelial capillaries by modifying a synthetic 3D biomimetic poly(ethylene glycol) (PEG)-hydrogel system in vitro We show that MSCs together with endothelial cells form micro-capillary networks specifically in soft PEG hydrogels. Transcriptome analysis of human MSCs isolated from engineered capillaries shows a prominent switch in extracellular matrix (ECM) production. We demonstrate that the ECM phenotypic switch of MSCs can be recapitulated in the absence of endothelial cells by functionalizing PEG hydrogels with the Notch-activator Jagged1. Moreover, transient culture of MSCs in Notch-inducing microenvironments reveals the reversibility of this ECM switch. These findings provide insight into the perivascular commitment of MSCs by use of engineered niche-mimicking synthetic hydrogels

    Whole-body image registration using patient-specific nonlinear finite element model

    No full text
    Registration of whole-body radiographic images is an important task in analysis of the disease progression and assessment of responses to therapies. Numerous registration algorithms have been successfully used in applications where differences between source and target images are relatively small. However, registration of whole-body CT scans remains extremely challenging for such algorithms as it requires taking large deformations of body organs and articulated skeletal motions into account. For registration problems involving large differences between source and target images, registration using biomechanical models has been recommended in the literature. Therefore, in this study, we propose a patient-specific nonlinear finite element model to predict the movements and deformations of body organs for the whole-body CT image registration. We conducted a verification example in which a patient-specific torso model was implemented using a suite of nonlinear finite element algorithms we previously developed, verified and successfully used in neuroimaging registration. When defining the patient-specific geometry for the generation of computational grid for our model, we abandoned the time-consuming hard segmentation of radiographic images typically used in patient-specific biomechanical modelling to divide the body into non-overlapping constituents with different material properties. Instead, an automated Fuzzy C-Means (FCM) algorithm for tissue classification was applied to assign the constitutive properties at finite element mesh integration points. The loading was defined as a prescribed displacement of the vertebrae (treated as articulated rigid bodies) between the two CT images. Contours of the abdominal organs obtained by warping the source image using the deformation field within the body predicted using our patient-specific finite element model differed by only up to only two voxels from the actual organs’ contours in the target image. These results can be regarded as encouraging step in confirming feasibility of conducting accurate registration of whole-body CT images using nonlinear finite element models without the necessity for time-consuming image segmentation when building patient-specific finite element meshes
    corecore