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Abstract
Purpose To assist the rehearsal and planning of robot-
assisted partial nephrectomy, a real-time simulation platform
is presented that allows surgeons to visualise and interactwith
rapidly constructed patient-specific biomechanical models
of the anatomical regions of interest. Coupled to a frame-
work for volumetric deformation, the platform furthermore
simulates intracorporeal 2D ultrasound image acquisition,
using preoperative imaging as the data source. This not only
facilitates the planning of optimal transducer trajectories and
viewpoints, but can also act as a validation context for manu-
ally operated freehand 3D acquisitions and reconstructions.
Methods The simulation platform was implemented within
the GPU-accelerated NVIDIA FleX position-based dynam-
ics framework. In order to validate the model and determine
material properties and other simulation parameter values,
a porcine kidney with embedded fiducial beads was CT-
scanned and segmented. Acquisitions for the rest position
and three different levels of probe-induced deformation were
collected. Optimal values of the cluster stiffness coeffi-
cients were determined for a range of different particle radii,
where the objective function comprised the mean distance
error between real and simulated fiducial positions over the
sequence of deformations.
Results The mean fiducial error at each deformation stage
was found to be compatiblewith the level of ultrasound probe
calibration error typically observed in clinical practice. Fur-
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thermore, the simulation exhibited unconditional stability on
account of its use of clustered shape-matching constraints.
Conclusions A novel position-based dynamics implemen-
tation of soft tissue deformation has been shown to facil-
itate several desirable simulation characteristics: real-time
performance, unconditional stability, rapid model construc-
tion enabling patient-specific behaviour and accuracy with
respect to reference CT images.

Keywords Biomechanical modelling · Soft tissue defor-
mation · Position-based dynamics · Robot-assisted partial
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Purpose

Robot-assisted partial nephrectomy (RAPN) is a surgical
procedure that potentially benefits from organ modelling
and patient-specific simulation due to the inherent anatomi-
cal complexity, specifically, the highly variable vascular and
tumour anatomy. The rehearsal and planning of such a pro-
cedure should ultimately lead to an improved performance in
the operating room, a decrease in operating times and intra-
operative rate of errors, and to increase the ability of surgeons
to complete the procedure [1].

Isotani et al. [2] developed a simulation approach for
patient-specific planning of RAPN, but the system remains
incapable of real-time navigation, tissue interaction or defor-
mation by the user. Makiyama et al. [3] developed a patient-
specific simulator for preoperative planning and training
of renal surgery. However, this system has not focused on
modelling the relevant aspects of a partial nephrectomy, as
the system simulates radical nephrectomy. Figueroa et al.
[4] developed a biomechanical model of the kidney to pre-
dict the estimated tumour displacement with respect to the
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kidney surface in the presence of an external load. In RAPN
the surgeon loses tactile feedback through palpation and is
often forced to resort to intraoperative ultrasound in order
to discriminate between healthy and malignant tissue. This
need for ultrasound scanning has encouraged the develop-
ment of simulation-based environments [5–7], with some
focused on replicating ultrasound images in the presence
of deformation. The platform presented in this paper aims
to provide a framework for volumetric deformation, allow-
ing the visualisation and interaction with a biomechanical
model of soft tissue. A patient-specific biomechanical model
of the patient’s anatomical regions of interest is imple-
mented through a position-based dynamics (PBD) approach.
Furthermore, this allows the simulation of patient-specific
intracorporeal 2D ultrasound image acquisition, using pre-
operative imaging as the input data.

The approaches used for the simulation of deformable
bodies have been mainly focused on physically based frame-
works. Traditional examples range from finite element meth-
ods, mass–spring systems, meshless methods to particle
systems. A review of such approaches can be found in [8].
These physically based approaches model deformable bod-
ies through the manipulation of internal and external forces.
Forces are transformed via the mass of constituent parts into
accelerations, using Newton’s second law of motion. The
elements that comprise an object move to a certain position
at each time step, determined by an integration scheme that
computes the current position from the derived accelerations.

A PBD approach, unlike the aforementioned methods,
models objects through the manipulation of position dis-
placements to solve geometrical constraints. In contrast to
force-based methods that achieve equilibrium configurations
through the integration of accelerations, this geometrically
based approach directly projects positions as a solution to a
quasi-static problem. In a PBD approach, an object is com-
posedofmultiple particles andbymanipulating the constraint
functions of the system, one can model different types of
material properties and behaviours. A shape-matching tech-
nique is an example of such a constraint function that can
be used to model rigid bodies, providing visually plausible
behaviours. This algorithm is efficient, stable and straight-
forward to implement. However, it can only accommodate
small deformations, and to account for larger movement, i.e.
to model soft tissue, a supplementary cluster-based deforma-
tion can be integrated [9]. The advantages of using this type
of implementation are robustness, simplicity, visual accu-
racy, real-time performance, efficiency and controllability
[10]. This geometrically motivated and mesh-free concept
has been used to model animations in computer graphics
due to their appealing performance and visual capabilities in
real time, assuring a stable simulation and maintaining low
computational times. The PBD approach has already been

applied in the medical field. Kubiak et al. [11] developed a
real-time surgical thread simulation, for an interactive and
robust simulation of knot tying. The work ofWang et al. [12]
couples a mass–spring model with a shape-matching tech-
nique to achieve a fast and stable simulation in virtual reality
systems, focusing on the deformation of a heart model. As
the scope of this research is related to the development of
a robotic surgery simulation platform, where all feedback is
visual, it is reasonable to prioritise visual fidelity over hav-
ing precise deformation accuracy. However, the recent work
developed by Bender et al. [13] demonstrates that through
modelling and optimising the simulation parameters or cou-
pling the simulation with a continuum-based formulation,
complex physical phenomena can be accurately exhibited.

The implementation developed in this paper aims to
present a framework that allows for a plausible and real-
istic deformation of soft tissue, thereby making possible the
implementation of ultrasound simulation, using preoperative
imaging as the source of anatomical data. The use of the
PBD approach with a clustered shape-matching constraint
implementation is novel in the field of soft tissue surgical
simulation environments.

Methods

Experimental set-up

CT images were acquired with a GE Innova 4100 scanner.
The hardware specifications used for performing the sim-
ulation were a HP Z820 machine and an NVIDIA K5000
GPU processor with 1536 cores. CT scan acquisitions from
a porcine kidney under different levels of deformation were
carried out to be used as the ground truth for the biome-
chanical behaviour of soft tissue. Fiducial glass beads with
a diameter of 1.5mm was embedded within the porcine kid-
ney. A total of 45 beads was distributed in multiple nylon
threads and introduced with a needle throughout the kidney.
Knots were regularly distributed on the threads to place the
beads inside but allowing them to move freely relative to
each other. The volumetric distribution of the beads in the
simulation environment is illustrated in Fig. 1.

The kidney was placed on a plasticine support that acts
as a complex boundary condition. An object that simulates
the ultrasound transducer [14] and the user’s interaction with
the platform was mounted on a 3D printed rig and used to
generate the different levels of deformation. The set-up of
the experimental procedure is shown in Fig. 2. The entire
set-up was CT-scanned and segmented for the rest position,
where the transducer was simply touching on the kidney’s
surface, and under three different levels of probe-induced
deformation.
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Fig. 1 Volumetric distribution of the fiducials embedded within the
kidney

Fig. 2 Deformation rig with kidney and support, placed on the CT
scanner table

Parallel SOR solver

The simulation system is implemented within the GPU-
accelerated NVIDIA FleX position-based dynamics frame-
work [15]. For a collection of objects comprising n particles,
the solver receives as input a vector of particle positions
x = [x1, x2, . . . , xn]T and a set of constraints that describe
the objects to be simulated. This implementation solves a
nonlinear systemof equality and inequality constraints so that

Ci (x + �x) = 0, i = 1, . . . , n (1)

C j (x + �x) ≥ 0, j = 1, . . . , n (2)

Constraints are solved using the Gauss–Seidel method. For
each iteration, through a linearisation of C around x, each
constraint can be solved sequentially

Ci (x + �x) ≈ Ci (x) + ∇Ci (x)�x = 0 (3)

The position displacement �x is restricted to lie along the
constraint gradient and is weighted by the inverse of themass
matrix M = diag(m1, . . . ,mn),

�x = M−1∇Ci (x)Tλi (4)

where λi is a Lagrange multiplier [13] that can be computed
by combining Eqs. (3) and (4)

λi = − Ci (x)

∇Ci (x)M−1∇Ci (x)T
(5)

After each constraint has been processed, positions are
updated. After a specified number of iterations, the change
in velocity is determined by the total constraint displacement

�v = �x
�t

(6)

where�t is the time step. The solution�x is the variation in
position that attempts to satisfy the constraints. From Eq. (6),
the resulting variation in position is equivalent to applying
an impulse at the beginning of each time step. Using this for-
mulation, the problem is equivalent to finding the minimum
change in kinetic energy that satisfies the constraints,which is
consistentwithGauss’ principle of least constraints. To accel-
erate this methodology, constraints are solved in a projected
Gauss–Jacobi fashion. To assure convergence, constraints are
averaged, i.e. each constraint is processed in parallel and
position variations �x are stored for each particle. At the
end of each iteration, each particle’s total constraint varia-
tion is divided by the total number of constraints affecting
it. To assure that this averaging is not too aggressive and the
number of necessary iterations to reach a solution does not
increase, a global parameter w is introduced to control the
rate of successive over-relaxation (SOR),

�xi = w

n

∑

n

∇C jλ j (7)

with w ∈ [1, 2]. Constraints may also be applied in groups
when precedence is desired. The reader is advised to refer
to the work of Müller et al. [10] and Macklin et al. [16] for
further details on this approach.

Algorithm 1 represents a single simulation time step in
this PBD approach. Steps (1)–(5) perform an integration
step on the velocity and position estimates for each parti-
cle and take into account any external forces (e.g. gravity).
Steps (6)–(9) handle contact detection. Position estimates
are manipulated in steps (10)–(15) such that they satisfy the
constraints. In steps (16)–(22), each constraint is processed
in parallel and each particle accumulates a position estimate.
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Algorithm 1 Single simulation time step (from [16])
1: for all particles i do
2: apply forces vi ⇐ vi + �tfext (xi )
3: predict position x∗

i ⇐ xi + �tvi
4: apply mass scaling m∗

i = mie−k�t (x∗
i )

5: end for
6: for all particles i do
7: find neighbouring particles Ni (x∗

i )

8: find solid contacts
9: end for
10: while i ter < stabilisationI terations do
11: �x ⇐ 0, n ⇐ 0
12: solve contact constraints for �x, n
13: update xi ⇐ xi + �x/n
14: update x∗ ⇐ x∗ + �x/n
15: end while
16: while i ter < solver I terations do
17: for each constraint group G do
18: �x ⇐ 0, n ⇐ 0
19: solve all constraints in G for �x, n
20: update x∗ ⇐ x∗ + �x/n
21: end for
22: end while
23: for all particles i do
24: update velocity vi ⇐ 1

�t (x
∗
i − xi )

25: update positions xi ⇐ x∗
i

26: end for

After all constraints have been applied, they are averaged
amongst each position. Steps (23)–(26) update velocities and
positions before the end of each time step.

Shape matching

In order to simulate deformable objects, the PBD approach
relies on a geometrically motivated shape-matching tech-
nique. This method is based on finding the least squares
optimal rigid transformations in 3D between two point sets
with a priori known correspondence [17]. The algorithm
requires as input a set of particles with masses mi and their
respective initial positions x0i . At each time step, the origi-
nal shape x0i is matched to the deformed shape xi . Then, the
deformed points xi are forced towards the goal positions gi .
Given two sets of points x0i and xi , the minimisation problem
is given by

∑

i

mi

(
R

(
x0i − t0

)
+ t − xi

)2
(8)

where mi are the individual masses, R is the rotation matrix,
t and t0 are the translation vectors. These translation vec-
tors are defined as the centre of mass of the initial x0cm and
actual xcm shapes, respectively. Once the optimal rotation R
and translation vector are derived, the goal positions can be
computed as

gi = R
(
x0i − x0cm

)
+ xcm (9)

From the goal positions, an integration scheme can be defined

vi (t + �t) = vi (t) + α
gi (t) − xi (t)

�t
+ �tfext (t)/mi (10)

xi (t + �t) = xi (t) + �tvi (t + �t) (11)

where α ∈ [0, 1] simulates stiffness. This scheme is uncon-
ditionally stable and does not introduce damping, as long as
the external forces are independent of the points’ locations
or are applied only instantaneously [17].

Cluster-based deformation

The implementation of the algorithm described in the pre-
vious section allows only for small deformations from the
initial shape. For larger deformations, i.e. to model soft tis-
sue, the set of particles that comprise an object can be divided
into overlapping clusters. Having a surfacemesh as input, the
space around it is divided into overlapping cubical regions.
For each region, a cluster is defined containing all the ver-
tices that lie within it. For each time step, the original shape
of each cluster is matched with the current shape. Using this
formulation, each cluster assures that the following term is
added to all particles that lie within it

�vi = α
gci (t) − xi (t)

�t
(12)

where gci (t) is the goal position of the particle i in relation to
the cluster c.

Collision and data preparation

The FleX engine supports several collision primitives,
including static triangular meshes, dynamic convex meshes
(specified as the intersection of half-spaces), signed distance
fields (SDFs) and static planes. The support structure is rep-
resented as a static triangular mesh. The original 3D CT
scan was first segmented in ITK-SNAP [18], exported as an
STL mesh into MeshLab [19], where it was smoothed using
the volume-preserving Humphrey’s Classes (HC) Lapla-
cian smoothing algorithm, and then underwent quadric edge
collapse decimation (quality threshold 0.99), producing a
collision mesh with some 5000 faces [20].

The geometry for the initial configuration of the kid-
ney was prepared in a similar manner. The algorithm that
computes the kidney particles generates a high-resolution
voxelisation of the mesh, places temporary samples at each
occupied voxel and also optionally distributes sample points
randomly on the mesh surface. Particles are then introduced
one at a time at sample points, and the process greedily
removes any samples that fall within the bounds of the for-
mer, until no samples remain. The particles are then clustered
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Fig. 3 Virtual kidney model. Representation of the local coordinate systems of each cluster and tetrahedra vertices (left); representation of particle
distribution with a radius of 2.7mm and wireframe surface (right)

together using the same method into shape-matching clus-
ters. The result of this procedure is illustrated in Fig. 3. The
ultrasound transducer [14] was approximated as a cuboid and
realised in FleX as a dynamic convex mesh, i.e. the intersec-
tion of three parallel pairs of orthogonal half-spaces.

Weighted matrix blending

Both the vertices of the triangular mesh representing the kid-
ney surface and the initial fiducial positions are expressed
in terms of local particle positions through weighted matrix
blending, sometimes referred to as ‘skinning’ [21]. This way,
the surface and subsurface geometries attached to the particle
system deform in accordance with the manipulated kidney
parenchyma. Each ‘skinned’ vertex can be associated with
up to four local cluster coordinate frames. Weights fall off
inversely with the square of the distance from vertex to local
cluster origin. The same technique is used to embed a course
tetrahedral mesh within the particle system (see white ver-
tices in the left side of Fig. 3), such that a planar discretisation
of the ultrasound scanning plane can be expressed barycentri-
cally in terms of those embedded vertices, and then mapped
back (i.e. undeformed) to voxels within the coordinate frame
of the initial 3D CT acquisition. In this manner, ultrasound
simulation scanning of a deformable kidney, or organs more
generally, is realised.

Calibration

In this work, a simple one-dimensional exhaustive search
was used to determine the optimal cluster stiffness coeffi-
cient (α) for a given particle radius. The quantity undergoing
minimisationwas themeanfiducial error over all of the defor-
mation stages, that is, the mean of the Euclidean distances
between the segmented and simulated fiducial positions at
each stage. The simulation was sufficiently fast so as not
to require a more efficient search strategy. Each evaluation
began with 120 time steps of simulation ‘warm-up’—that
is, a conservative period during which the particles adopt

Table 1 Simulation settings for the calibration process

Time step 1/60 s

Simulation substeps 3 (collision detection is performed
once per substep)

Substep iterations 9 (each substep performs this many
solve passes over the constraints)

Cluster spacing factor 3.33 (applied to particle radius,
controls cluster overlap)

Volume sampling factor 4 (controls particle density)

Relaxation type Local (relaxation factor = 1.0)

Acceleration due to gravity 9.81m/s2

Tissue density 1.05 g/cm3 [22]

Shape friction coefficient 0.35

Particle friction coefficient 0.25

Damping factor 12.0

their initial equilibrium positions with respect to the pre-
vailing collision constraints. Subsequently, the ultrasound
transducer position was interpolated linearly over a sequence
of 90 time steps at each deformation stage, in accor-
dance with its relative position in the corresponding 3D CT
acquisition. Formore complex particle behaviours with addi-
tional parameters, the calibration scheme generalises natu-
rally to a multi-dimensional optimisation problem. Table 1
shows the FleX settings [15] used during the calibration
process.

Results

The graph presented in Fig. 4 represents the mean fidu-
cial error as a function of the cluster stiffness coefficient,
for different values of particle radius. The different solid
lines represent the quartic polynomials fitted to smooth
results.

Tables 2, 3 and 4 show the fiducial mean errors, standard
deviation and maximum error, respectively, for the initial

123



924 Int J CARS (2016) 11:919–928

Fig. 4 Mean fiducial error as a function of cluster stiffness, for different values of the particle radius

Table 2 Fiducial mean error (mm)

Particle radius (mm) 2.2 2.5 2.7 3.0 3.3
Stiffness α 0.95 0.60 0.50 0.45 0.35

0th deformation (0.00mm) 0.62 0.65 0.72 0.79 0.93

1st deformation (5.95mm) 1.41 (24%) 1.49 (25%) 1.55 (26%) 1.51 (25%) 1.46 (24%)

2nd deformation (9.48mm) 1.46 (15%) 1.61 (17%) 1.70 (18%) 1.74 (18%) 1.67 (18%)

3rd deformation (12.38mm) 2.26 (18%) 2.30 (19%) 2.41 (19%) 2.39 (19%) 2.32 (19%)

Overall mean deformation 1.44 1.51 1.60 1.61 1.60

Table 3 Fiducial error standard deviation (mm)

Particle radius (mm) 2.2 2.5 2.7 3.0 3.3
Stiffness α 0.95 0.60 0.50 0.45 0.35

0th deformation (0.00mm) 0.34 0.36 0.41 0.43 0.41

1st deformation (5.95mm) 0.59 0.65 0.64 0.61 0.58

2nd deformation (9.48mm) 0.80 0.96 0.95 1.03 0.79

3rd deformation (12.38mm) 1.02 1.16 1.14 1.15 1.00

Table 4 Fiducial maximum error (mm)

Particle radius (mm) 2.2 2.5 2.7 3.0 3.3
Stiffness α 0.95 0.60 0.50 0.45 0.35

0th deformation (0.00mm) 1.24 1.37 1.42 1.57 1.76

1st deformation (5.95mm) 2.92 2.93 2.88 2.91 2.89

2nd deformation (9.48mm) 3.16 3.97 3.80 4.21 3.33

3rd deformation (12.38mm) 4.54 4.76 4.73 5.29 4.55

position and the different levels of deformation per particle
radius. Optimal stiffness coefficients, within the permitted
range [0, 1], are also tabulated. An observation of Table 2
reveals intuitive behaviour: as the deformation of the model
increases, the mean fiducial error increases in kind. More-
over, this is independent of the stiffness value. The values
displayed in brackets represent the percentage error with
respect to the cumulative deformation and allow one to infer
that the mean fiducial error is approximately proportional to
the induced level of deformation. The mean fiducial error
displacements are acceptable values in the context of the
12.38mm overall displacement reached by the probe. The
remaining information in this table shows that as a gen-
eral trend, when the radius increases and optimal stiffness
decreases, the fiducial mean error gradually increases with
a range of approximately 0.15mm. Tables 3 and 4 support
the aforementioned results and illustrate a distribution of low
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Fig. 5 Particle count as a function of the particle radius (Left); cluster count as a function of the particle radius (right)

Fig. 6 From left to right—representation of the rest position and the three increasing levels of deformation in the simulation framework (top) and
in the CT images of the experimental set-up (bottom)

standard deviations over all fiducials. Further analysis of the
mean fiducial error as a function of the distance to the probe,
across all levels of deformation, indicates that these variables
are weakly correlated.

Figure 5 illustrates the number of clusters (right) and num-
ber of particles (left) as a function of the particle radius. As
the particle radius increases, a decrease in the particle and
cluster counts is observed. The cluster allocation algorithm
results in a number of clusters proportional to the number of
particles.

Figure 6 shows a representation of the deformation applied
on the kidney in the CT images (bottom) and the correspond-
ing deformation in the simulation framework (top). One can
also observe the fiducial displacements as the deformation is
induced.

Regarding the simulation performance, Fig. 7 shows the
total simulation time as a function of the elapsed time. Two
series of data are analysed—the total simulation time and the
particle collision times. A ‘warm-up’ period of 2s is observed
with no transducer displacement, during which both data
series present a noisy but static mean performance time. As
the transducer starts moving and induces deformation on the
kidney model, an increase in the total simulation times is
experienced in both data series. This is an expected result as
more contacts are made.

A breakdown of the simulation performance times can
be observed in Fig. 8. The total simulation time is split into
the individual timings necessary in the various steps of the
PBD approach. Table 5 shows the average, standard devia-
tion, maximum and minimum performance simulation times
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Fig. 7 Total simulation time for one time step as a function of the simulation elapsed time, for a particle radius of 2.2mm and cluster stiffness
coefficient of 0.5

Fig. 8 Distribution of the performance timings for the various steps of the PBD approach. A cluster stiffness coefficient of 0.5 and a particle radius
of 2.7mm were used as simulation parameters

within the simulation calibration as a function of the particle
radius. As the particle radius increases, the total simulation
time gradually increases. This is a counter-intuitive result,
as one would expect to observe a better performance as the
number of particles decreases. An inefficient underutilisation

of the GPU might be an explanation for this performance
behaviour. However, real-time operation is evident in gen-
eral. Even in theworst-case scenario (15.68ms), an execution
rate of approximately 64 simulation steps-per-second is
achieved.
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Table 5 Time taken to simulate one time step over a single calibration
evaluation (ms)

Particle radius (mm) 2.2 2.5 2.7 3.0 3.3

Mean 12.10 12.10 12.37 12.66 14.16

Standard deviation 0.33 0.33 0.21 0.29 0.29

Minimum 11.68 11.68 11.96 12.28 13.67

Maximum 12.77 12.77 12.84 13.37 15.68

Conclusions

A novel PBD implementation [16] coupled with a clustered
shape-matching constraints methodology has been shown
to be capable of modelling soft tissue deformation, in the
context of RAPN simulation. Coupled to this framework,
the platform furthermore simulates intracorporeal 2D ultra-
sound image acquisition, using the preoperative CT images
as the data source. Simulation stiffness and particle radius
parameters were varied through the computation of multi-
ple simulations to understand the optimal trade-off between
accuracy and performance.

Results show real-time performance, accuracy and inher-
ent unconditional stability as a result of using a shape-
matching technique. The methodology developed in this
framework can be applied in various other surgical simu-
lation applications. This system requires as input a set of
preoperative images and segmented structures of anatomical
interest and outputs a 3D model capable of soft tissue defor-
mation and interaction. This straightforward data preparation
makes patient-specific simulation possible on a broad scale.
The overall mean fiducial error was found to be compatible
with the level of ultrasound probe calibration error typically
observed in clinical practice [14]. The nonzero mean fidu-
cial error measured for the 0th level of deformation might
be a cause for a higher fiducial error across all deforma-
tions due to overlapping support segmentations or an absence
of initial gravity compensation. These characteristics will
be accounted for in future work. The exhaustive search for
optimal stiffness parameter allowed an accurate and stable
simulation of deformation.

Regarding the simulation performance analysis, results
reveal that this implementation runs in real time while
accurately maintaining complex soft tissue behaviour and
boundary conditions. A PBD implementation, despite pre-
senting the previously mentioned advantages over other
approaches [16], has some limitations. The model’s realised
stiffness does not depend only on the defined stiffness para-
meter, as it is dependent also on the time step, the number
of solver iterations and the adopted number of clusters and
shape-matching constraints. As a result, stiffness must be set
in the context of these chosen values.

Focusing on the applicability of this simulation to patient-
specific scenarios, two issues should be made clear. Previous
research has been conducted in order to assess the suit-
ability of using porcine renal tissue as a surrogate for the
human kidney. Tests employing dynamic mechanical load
were carried out on renal parenchyma [23] and the kidney
capsule [24] to assess their behavioural response. Regard-
ing tissue properties, the work developed by Miller et al.
[25] concludes that, since kidneys and similar organs are
considered almost incompressible, the dependence on the
volumetric response is of minor consequence for soft organ
biomechanics. Such problems are considered in light of pure-
displacement or displacement-zero traction (deformation is
modelled as forcedmotion in response to changing boundary
conditions), and therefore, it is possible tomodel deformation
without full knowledge of patient-specific tissue properties.
As future work, effort will be focused on developing the
planning of optimal transducer trajectories and viewpoints.
Furthermore, the simulation will act as a validation context
for manually operated freehand 3D acquisitions and recon-
structions.
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