18 research outputs found

    Solving the Simplest Theory of Quantum Gravity

    Full text link
    We solve what is quite likely the simplest model of quantum gravity, the worldsheet theory of an infinitely long, free bosonic string in Minkowski space. Contrary to naive expectations, this theory is non-trivial. We illustrate this by constructing its exact factorizable S-matrix. Despite its simplicity, the theory exhibits many of the salient features expected from more mature quantum gravity models, including the absence of local off-shell observables, a minimal length, a maximum achievable (Hagedorn) temperature, as well as (integrable relatives of) black holes. All these properties follow from the exact S-matrix. We show that the complete finite volume spectrum can be reconstructed analytically from this S-matrix with the help of the thermodynamic Bethe Ansatz. We argue that considered as a UV complete relativistic two-dimensional quantum field theory the model exhibits a new type of renormalization group flow behavior, "asymptotic fragility". Asymptotically fragile flows do not originate from a UV fixed point.Comment: 32+4 pages, 1 figure, v2: typos fixed, published versio

    Photoemission "experiments" on holographic superconductors

    Get PDF
    We study the effects of a superconducting condensate on holographic Fermi surfaces. With a suitable coupling between the fermion and the condensate, there are stable quasiparticles with a gap. We find some similarities with the phenomenology of the cuprates: in systems whose normal state is a non-Fermi liquid with no stable quasiparticles, a stable quasiparticle peak appears in the condensed phase.Comment: 14 pages, 13 figures; v2: typos corrected and some clarification adde

    D-brane Charges in Gravitational Duals of 2+1 Dimensional Gauge Theories and Duality Cascades

    Full text link
    We perform a systematic analysis of the D-brane charges associated with string theory realizations of d=3 gauge theories, focusing on the examples of the N=4 supersymmetric U(N)xU(N+M) Yang-Mills theory and the N=3 supersymmetric U(N)xU(N+M) Yang-Mills-Chern-Simons theory. We use both the brane construction of these theories and their dual string theory backgrounds in the supergravity approximation. In the N=4 case we generalize the previously known gravitational duals to arbitrary values of the gauge couplings, and present a precise mapping between the gravity and field theory parameters. In the N=3 case, which (for some values of N and M) flows to an N=6 supersymmetric Chern-Simons-matter theory in the IR, we argue that the careful analysis of the charges leads to a shift in the value of the B-field in the IR solution by 1/2, in units where its periodicity is one, compared to previous claims. We also suggest that the N=3 theories may exhibit, for some values of N and M, duality cascades similar to those of the Klebanov-Strassler theory.Comment: 47 pages, 9 figures; minor changes, references adde

    The Cosmological Constant

    Get PDF
    This is a review of the physics and cosmology of the cosmological constant. Focusing on recent developments, I present a pedagogical overview of cosmology in the presence of a cosmological constant, observational constraints on its magnitude, and the physics of a small (and potentially nonzero) vacuum energy.Comment: 50 pages. Submitted to Living Reviews in Relativity (http://www.livingreviews.org/), December 199

    Stochastic Gravity: Theory and Applications

    Get PDF
    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel. In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime, compute the two-point correlation functions of these perturbations and prove that Minkowski spacetime is a stable solution of semiclassical gravity. Second, we discuss structure formation from the stochastic gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a black hole and describe the metric fluctuations near the event horizon of an evaporating black holeComment: 100 pages, no figures; an update of the 2003 review in Living Reviews in Relativity gr-qc/0307032 ; it includes new sections on the Validity of Semiclassical Gravity, the Stability of Minkowski Spacetime, and the Metric Fluctuations of an Evaporating Black Hol

    Varying constants, Gravitation and Cosmology

    Get PDF
    Fundamental constants are a cornerstone of our physical laws. Any constant varying in space and/or time would reflect the existence of an almost massless field that couples to matter. This will induce a violation of the universality of free fall. It is thus of utmost importance for our understanding of gravity and of the domain of validity of general relativity to test for their constancy. We thus detail the relations between the constants, the tests of the local position invariance and of the universality of free fall. We then review the main experimental and observational constraints that have been obtained from atomic clocks, the Oklo phenomenon, Solar system observations, meteorites dating, quasar absorption spectra, stellar physics, pulsar timing, the cosmic microwave background and big bang nucleosynthesis. At each step we describe the basics of each system, its dependence with respect to the constants, the known systematic effects and the most recent constraints that have been obtained. We then describe the main theoretical frameworks in which the low-energy constants may actually be varying and we focus on the unification mechanisms and the relations between the variation of different constants. To finish, we discuss the more speculative possibility of understanding their numerical values and the apparent fine-tuning that they confront us with.Comment: 145 pages, 10 figures, Review for Living Reviews in Relativit

    Exploring new physics frontiers through numerical relativity

    Get PDF
    The demand to obtain answers to highly complex problems within strong-field gravity has been met with significant progress in the numerical solution of Einstein's equations - along with some spectacular results - in various setups. We review techniques for solving Einstein's equations in generic spacetimes, focusing on fully nonlinear evolutions but also on how to benchmark those results with perturbative approaches. The results address problems in high-energy physics, holography, mathematical physics, fundamental physics, astrophysics and cosmology
    corecore