115 research outputs found

    Efficient coding of natural images in the mouse visual cortex.

    Get PDF
    How the activity of neurons gives rise to natural vision remains a matter of intense investigation. The mid-level visual areas along the ventral stream are selective to a common class of natural images-textures-but a circuit-level understanding of this selectivity and its link to perception remains unclear. We addressed these questions in mice, first showing that they can perceptually discriminate between textures and statistically simpler spectrally matched stimuli, and between texture types. Then, at the neural level, we found that the secondary visual area (LM) exhibited a higher degree of selectivity for textures compared to the primary visual area (V1). Furthermore, textures were represented in distinct neural activity subspaces whose relative distances were found to correlate with the statistical similarity of the images and the mice's ability to discriminate between them. Notably, these dependencies were more pronounced in LM, where the texture-related subspaces were smaller than in V1, resulting in superior stimulus decoding capabilities. Together, our results demonstrate texture vision in mice, finding a linking framework between stimulus statistics, neural representations, and perceptual sensitivity-a distinct hallmark of efficient coding computations

    Noise-driven amplification mechanisms governing the emergence of coherent extreme events in excitable systems

    Get PDF
    The physics governing the formation of extreme coherent events, i.e., the systemwide emergence of an observable taking extraordinary values in a short time window, is a relevant yet elusive problem to a variety of disciplines ranging from climate science to neuroscience. Despite their inherent differences, systems exhibiting episodes of extreme coherence can be abstracted as a set of coupled nonlinear elements in a noisy and networked environment. Here, we propose a model describing the generation of extreme coherence by exploring theoretically and numerically the capacity of noise and network correlations to amplify a critical core of the system and trigger an extreme event. Although we principally center our study in modeling bursting phenomena in neuronal circuits, we extend our analysis to other systems such as algae blooms and infectious diseases. We show that extreme events originate in a relatively small core of the system and that different cores may coexist. We also show that the amplification mechanisms within a system are highly robust, so that the deletion of central nodes leads to other nodes taking leadership

    Strain control of a bandwidth-driven spin reorientation in Ca₃Ru₂O₇

    Get PDF
    The layered-ruthenate family of materials possess an intricate interplay of structural, electronic and magnetic degrees of freedom that yields a plethora of delicately balanced ground states. This is exemplified by Ca3Ru2O7, which hosts a coupled transition in which the lattice parameters jump, the Fermi surface partially gaps and the spins undergo a 90∘ in-plane reorientation. Here, we show how the transition is driven by a lattice strain that tunes the electronic bandwidth. We apply uniaxial stress to single crystals of Ca3Ru2O7, using neutron and resonant x-ray scattering to simultaneously probe the structural and magnetic responses. These measurements demonstrate that the transition can be driven by externally induced strain, stimulating the development of a theoretical model in which an internal strain is generated self-consistently to lower the electronic energy. We understand the strain to act by modifying tilts and rotations of the RuO6 octahedra, which directly influences the nearest-neighbour hopping. Our results offer a blueprint for uncovering the driving force behind coupled phase transitions, as well as a route to controlling them

    Correlates of tobacco cessation counseling among Hispanic physicians in the US: a cross-sectional survey study.

    Get PDF
    BACKGROUND: Physician advice is an important motivator for attempting to stop smoking. However, physicians\u27 lack of intervention with smokers has only modestly improved in the last decade. Although the literature includes extensive research in the area of the smoking intervention practices of clinicians, few studies have focused on Hispanic physicians. The purpose of this study was to explore the correlates of tobacco cessation counseling practices among Hispanic physicians in the US. METHODS: Data were collected through a validated survey instrument among a cross-sectional sample of self-reported Hispanic physicians practicing in New Mexico, and who were members of the New Mexico Hispanic Medical Society in the year 2001. Domains of interest included counseling practices, self-efficacy, attitudes/responsibility, and knowledge/skills. Returned surveys were analyzed to obtain frequencies and descriptive statistics for each survey item. Other analyses included: bivariate Pearson\u27s correlation, factorial ANOVAs, and multiple linear regressions. RESULTS: Respondents (n = 45) reported a low level of compliance with tobacco control guidelines and recommendations. Results indicate that physicians\u27 familiarity with standard cessation protocols has a significant effect on their tobacco-related practices (r = .35, variance shared = 12%). Self-efficacy and gender were both significantly correlated to tobacco related practices (r = .42, variance shared = 17%). A significant correlation was also found between self-efficacy and knowledge/skills (r = .60, variance shared = 36%). Attitudes/responsibility was not significantly correlated with any of the other measures. CONCLUSION: More resources should be dedicated to training Hispanic physicians in tobacco intervention. Training may facilitate practice by increasing knowledge, developing skills and, ultimately, enhancing feelings of self-efficacy

    Core charge distribution and self assembly of columnar phases: the case of triphenylenes and azatriphenylenes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The relation betweeen the structure of discotic molecules and columnar properties, a crucial point for the realization of new advanced materials, is still largely unknown. A paradigmatic case is that hexa-alkyl-thio substituted triphenylenes present mesogenic behavior while the corresponding azatriphenylenes, similar in shape and chemical structure, but with a different core charge distribution, do not form any liquid crystalline mesophase. This study is aimed at investigating, with the help of computer simulations techniques, the effects on phase behaviour of changes of the charge distribution in the discotic core.</p> <p>Results</p> <p>We described the shape and the pair, dispersive and electrostatic, interactions of hexa alkyl triphenylenes by uniaxial Gay-Berne discs with embedded point charges. Gay-Berne parameters were deduced by fitting the dispersive energies obtained from an atomistic molecular dynamics simulation of a small sample of hexa-octyl-thio triphenylene molecules in columnar phase, while a genetic algorithm was used to get a minimal set of point charges that properly reproduces the ab anitio electrostatic potential. We performed Monte Carlo simulations of three molecular models: the pure Gay-Berne disc, used as a reference, the Gay-Berne disc with hexa-thio triphenylene point charges, the Gay-Berne disc with hexa-thio azatriphenylene point charges. The phase diagram of the pure model evidences a rich polymorphism, with isotropic, columnar and crystalline phases at low pressure, and the appearance of nematic phase at higher pressure.</p> <p>Conclusion</p> <p>We found that the intermolecular electrostatic potential among the cores is fundamental in sta-bilizing/destabilizing columnar phases; in particular the triphenylene charge distribution stabilizes the columnar structure, while the azatriphenylene distribution suppresses its formation in favor of the nematic phase. We believe the present model could be successfully employed as the basis for coarse-grained level simulations of a wider class of triphenylene derivatives.</p

    Brain Performance versus Phase Transitions

    Get PDF
    We here illustrate how a well-founded study of the brain may originate in assuming analogies with phase-transition phenomena. Analyzing to what extent a weak signal endures in noisy environments, we identify the underlying mechanisms, and it results a description of how the excitability associated to (non-equilibrium) phase changes and criticality optimizes the processing of the signal. Our setting is a network of integrate-and-fire nodes in which connections are heterogeneous with rapid time-varying intensities mimicking fatigue and potentiation. Emergence then becomes quite robust against wiring topology modification—in fact, we considered from a fully connected network to the Homo sapiens connectome—showing the essential role of synaptic flickering on computations. We also suggest how to experimentally disclose significant changes during actual brain operation.The authors acknowledge support from the Spanish Ministry of Economy and Competitiveness under the project FIS2013-43201-P

    Pharmacodynamic and pharmacogenetic angiogenesis-related markers of first-line FOLFOXIRI plus bevacizumab schedule in metastatic colorectal cancer

    Get PDF
    BACKGROUND: The identification of molecular and genetic markers to predict or monitor the efficacy of bevacizumab (BV) represents a key issue in the treatment of metastatic colorectal cancer (mCRC). METHODS: Plasma levels of vascular endothelial growth factor (VEGF), placental growth factor (PlGF), soluble VEGF receptor 2 (sVEGFR-2) and thrombospondin-1 (TSP-1) were assessed by ELISA assay at different time points in a cohort of 25 patients enroled in a phase II trial of GONO-FOLFOXIRI plus BV as first-line treatment of mCRC. VEGF: -2578A/C, -1498C/T, -1154A/G, -634C/G and 936C/T; and VEGFR-2: -604A/G, +1192C/T and +1719A/T, polymorphisms were assessed in a total of 54 patients. RESULTS: Treatment with GONO-FOLFOXIRI plus BV determined a prolonged and significant reduction in plasma free, biologically active VEGF concentration. Interestingly, VEGF concentrations remained lower than at baseline also at the time of PD. Conversely, PlGF levels increased during the treatment if compared with baseline, suggesting a possible role in tumour resistance; moreover, sVEGFR-2 increased at the time of PD, as well as TSP-1. No association of assessed polymorphisms with outcome was found. CONCLUSION: Our study suggested the possible mechanisms of resistance to combined therapy in those patients with a progressive disease to be tested in ongoing phase III randomised studies

    Humoral Response to the Anopheles gambiae Salivary Protein gSG6: A Serological Indicator of Exposure to Afrotropical Malaria Vectors

    Get PDF
    Salivary proteins injected by blood feeding arthropods into their hosts evoke a saliva-specific humoral response which can be useful to evaluate exposure to bites of disease vectors. However, saliva of hematophagous arthropods is a complex cocktail of bioactive factors and its use in immunoassays can be misleading because of potential cross-reactivity to other antigens. Toward the development of a serological marker of exposure to Afrotropical malaria vectors we expressed the Anopheles gambiae gSG6, a small anopheline-specific salivary protein, and we measured the anti-gSG6 IgG response in individuals from a malaria hyperendemic area of Burkina Faso, West Africa. The gSG6 protein was immunogenic and anti-gSG6 IgG levels and/or prevalence increased in exposed individuals during the malaria transmission/rainy season. Moreover, this response dropped during the intervening low transmission/dry season, suggesting it is sensitive enough to detect variation in vector density. Members of the Fulani ethnic group showed higher anti-gSG6 IgG response as compared to Mossi, a result consistent with the stronger immune reactivity reported in this group. Remarkably, anti-gSG6 IgG levels among responders were high in children and gradually declined with age. This unusual pattern, opposite to the one observed with Plasmodium antigens, is compatible with a progressive desensitization to mosquito saliva and may be linked to the continued exposure to bites of anopheline mosquitoes. Overall, the humoral anti-gSG6 IgG response appears a reliable serological indicator of exposure to bites of the main African malaria vectors (An. gambiae, Anopheles arabiensis and, possibly, Anopheles funestus) and it may be exploited for malaria epidemiological studies, development of risk maps and evaluation of anti-vector measures. In addition, the gSG6 protein may represent a powerful model system to get a deeper understanding of molecular and cellular mechanisms underlying the immune tolerance and progressive desensitization to insect salivary allergens
    • …
    corecore