74 research outputs found

    Differential attraction in mosquito-human interactions and implications for disease control: Differential attraction to mosquitoes

    Get PDF
    Mosquito-borne diseases are a major burden on human health worldwide and their eradication through vector control methods remains challenging. In particular, the success of vector control interventions for targeting diseases such as malaria is under threat, in part due to the evolution of insecticide resistance, while for other diseases effective control solutions are still lacking. The rate at which mosquitoes encounter and bite humans is a key determinant of their capacity for disease transmission. Future progress is strongly reliant on improving our understanding of the mechanisms leading to a mosquito bite. Here, we review the biological factors known to influence the attractiveness of mosquitoes to humans, such as body odour, the skin microbiome, genetics and infection by parasites. We identify the knowledge gaps around the relative contribution of each factor, and the potential links between them, as well as the role of natural selection in shaping vector-host-parasite interactions. Finally, we argue that addressing these questions will contribute to improving current tools and the development of novel interventions for the future. This article is part of the theme issue 'Novel control strategies for mosquito-borne diseases'

    The Classification of T Dwarfs

    Get PDF
    We discuss methods for classifying T dwarfs based on spectral morphological features and indices. T dwarfs are brown dwarfs which exhibit methane absorption bands at 1.6 and 2.2 μm{\mu}m. Spectra at red optical (6300--10100 {\AA}) and near-infrared (1--2.5 μm{\mu}m) wavelengths are presented, and differences between objects are noted and discussed. Spectral indices useful for classification schemes are presented. We conclude that near-infrared spectral classification is generally preferable for these cool objects, with data sufficient to resolve the 1.17 and 1.25 μm{\mu}m K I doublets lines being most valuable. Spectral features sensitive to gravity are discussed, with the strength of the K-band peak used as an example. Such features may be used to derive a two-dimensional scheme based on temperature and mass, in analogy to the MK temperature and luminosity classes.Comment: 15 pages, 6 figures, conference proceedings for IAU Ultracool Dwarf Stars session, ed. I. Steele & H. Jone

    The Alpine Cushion Plant Silene acaulis as Foundation Species: A Bug’s-Eye View to Facilitation and Microclimate

    Get PDF
    Alpine ecosystems are important globally with high levels of endemic and rare species. Given that they will be highly impacted by climate change, understanding biotic factors that maintain diversity is critical. Silene acaulis is a common alpine nurse plant shown to positively influence the diversity and abundance of organisms–predominantly other plant species. The hypothesis that cushion or nurse plants in general are important to multiple trophic levels has been proposed but rarely tested. Alpine arthropod diversity is also largely understudied worldwide, and the plant-arthropod interactions reported are mostly negative, that is,. herbivory. Plant and arthropod diversity and abundance were sampled on S. acaulis and at paired adjacent microsites with other non-cushion forming vegetation present on Whistler Mountain, B.C., Canada to examine the relative trophic effects of cushion plants. Plant species richness and abundance but not Simpson’s diversity index was higher on cushion microsites relative to other vegetation. Arthropod richness, abundance, and diversity were all higher on cushion microsites relative to other vegetated sites. On a microclimatic scale, S. acaulis ameliorated stressful conditions for plants and invertebrates living inside it, but the highest levels of arthropod diversity were observed on cushions with tall plant growth. Hence, alpine cushion plants can be foundation species not only for other plant species but other trophic levels, and these impacts are expressed through both direct and indirect effects associated with altered environmental conditions and localized productivity. Whilst this case study tests a limited subset of the membership of alpine animal communities, it clearly demonstrates that cushion-forming plant species are an important consideration in understanding resilience to global changes for many organisms in addition to other plants

    Detection and Functional Characterization of a 215 Amino Acid N-Terminal Extension in the Xanthomonas Type III Effector XopD

    Get PDF
    During evolution, pathogens have developed a variety of strategies to suppress plant-triggered immunity and promote successful infection. In Gram-negative phytopathogenic bacteria, the so-called type III protein secretion system works as a molecular syringe to inject type III effectors (T3Es) into plant cells. The XopD T3E from the strain 85-10 of Xanthomonas campestris pathovar vesicatoria (Xcv) delays the onset of symptom development and alters basal defence responses to promote pathogen growth in infected tomato leaves. XopD was previously described as a modular protein that contains (i) an N-terminal DNA-binding domain (DBD), (ii) two tandemly repeated EAR (ERF-associated amphiphillic repression) motifs involved in transcriptional repression, and (iii) a C-terminal cysteine protease domain, involved in release of SUMO (small ubiquitin-like modifier) from SUMO-modified proteins. Here, we show that the XopD protein that is produced and secreted by Xcv presents an additional N-terminal extension of 215 amino acids. Closer analysis of this newly identified N-terminal domain shows a low complexity region rich in lysine, alanine and glutamic acid residues (KAE-rich) with high propensity to form coiled-coil structures that confers to XopD the ability to form dimers when expressed in E. coli. The full length XopD protein identified in this study (XopD1-760) displays stronger repression of the XopD plant target promoter PR1, as compared to the XopD version annotated in the public databases (XopD216-760). Furthermore, the N-terminal extension of XopD, which is absent in XopD216-760, is essential for XopD type III-dependent secretion and, therefore, for complementation of an Xcv mutant strain deleted from XopD in its ability to delay symptom development in tomato susceptible cultivars. The identification of the complete sequence of XopD opens new perspectives for future studies on the XopD protein and its virulence-associated functions in planta

    Shedding Light on the Galaxy Luminosity Function

    Full text link
    From as early as the 1930s, astronomers have tried to quantify the statistical nature of the evolution and large-scale structure of galaxies by studying their luminosity distribution as a function of redshift - known as the galaxy luminosity function (LF). Accurately constructing the LF remains a popular and yet tricky pursuit in modern observational cosmology where the presence of observational selection effects due to e.g. detection thresholds in apparent magnitude, colour, surface brightness or some combination thereof can render any given galaxy survey incomplete and thus introduce bias into the LF. Over the last seventy years there have been numerous sophisticated statistical approaches devised to tackle these issues; all have advantages -- but not one is perfect. This review takes a broad historical look at the key statistical tools that have been developed over this period, discussing their relative merits and highlighting any significant extensions and modifications. In addition, the more generalised methods that have emerged within the last few years are examined. These methods propose a more rigorous statistical framework within which to determine the LF compared to some of the more traditional methods. I also look at how photometric redshift estimations are being incorporated into the LF methodology as well as considering the construction of bivariate LFs. Finally, I review the ongoing development of completeness estimators which test some of the fundamental assumptions going into LF estimators and can be powerful probes of any residual systematic effects inherent magnitude-redshift data.Comment: 95 pages, 23 figures, 3 tables. Now published in The Astronomy & Astrophysics Review. This version: bring in line with A&AR format requirements, also minor typo corrections made, additional citations and higher rez images adde
    corecore