41 research outputs found

    Determination of the efficacy and side-effect profile of lower doses of intrathecal morphine in patients undergoing total knee arthroplasty

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intrathecal (IT) morphine provides excellent post-operative analgesia, but causes multiple side effects including nausea and vomiting (PONV), pruritus and respiratory depression, particularly at higher doses. The lowest effective dose of spinal morphine in patients undergoing total knee arthroplasty is not known.</p> <p>Methods</p> <p>We evaluated the analgesic efficacy and side effect profile of 100 – 300 μg IT morphine in patients undergoing elective total knee replacement in this prospective, randomized, controlled, double-blind study. Sixty patients over the age of 60 undergoing elective knee arthroplasty were enrolled. Patients were randomized to receive spinal anaesthesia with 15 mg Bupivacaine and IT morphine in three groups: (i) 100 μg; (ii) 200 μg; and (iii) 300 μg.</p> <p>Results</p> <p>Both 200 μg and 300 μg IT morphine provided comparable levels of postoperative analgesia. However, patients that received 100 μg had greater pain postoperatively, with higher pain scores and a greater requirement for supplemental morphine. There were no differences between groups with regard to PONV, pruritus, sedation, respiratory depression or urinary retention.</p> <p>Conclusion</p> <p>Both 200 μg and 300 μg provided comparable postoperative analgesia, which was superior to that provided by 100 μg IT morphine in patients undergoing total knee arthroplasty. Based on these findings, we recommend that 200 μg IT morphine be used in these patients.</p> <p>Trial registration</p> <p>ClinicalTrials.gov Identifier NCT00695045</p

    Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses.

    Get PDF
    Mesenchymal tumor subpopulations secrete pro-tumorigenic cytokines and promote treatment resistance1-4. This phenomenon has been implicated in chemorefractory small cell lung cancer and resistance to targeted therapies5-8, but remains incompletely defined. Here, we identify a subclass of endogenous retroviruses (ERVs) that engages innate immune signaling in these cells. Stimulated 3 prime antisense retroviral coding sequences (SPARCS) are oriented inversely in 3' untranslated regions of specific genes enriched for regulation by STAT1 and EZH2. Derepression of these loci results in double-stranded RNA generation following IFN-γ exposure due to bi-directional transcription from the STAT1-activated gene promoter and the 5' long terminal repeat of the antisense ERV. Engagement of MAVS and STING activates downstream TBK1, IRF3, and STAT1 signaling, sustaining a positive feedback loop. SPARCS induction in human tumors is tightly associated with major histocompatibility complex class 1 expression, mesenchymal markers, and downregulation of chromatin modifying enzymes, including EZH2. Analysis of cell lines with high inducible SPARCS expression reveals strong association with an AXL/MET-positive mesenchymal cell state. While SPARCS-high tumors are immune infiltrated, they also exhibit multiple features of an immune-suppressed microenviroment. Together, these data unveil a subclass of ERVs whose derepression triggers pathologic innate immune signaling in cancer, with important implications for cancer immunotherapy

    Nonsteroidal anti-inflammatory drugs alter vasa recta diameter via pericytes

    No full text
    We have previously shown that vasa recta pericytes are known to dilate vasa recta capillaries in the presence of PGE2 and contract vasa recta capillaries when endogenous production of PGE2 is inhibited by the nonselective nonsteroidal anti-inflammatory drug (NSAID) indomethacin. In the present study, we used a live rat kidney slice model to build on these initial observations and provide novel data that demonstrate that nonselective, cyclooxygenase-1-selective, and cyclooxygenase -2-selective NSAIDs act via medullary pericytes to elicit a reduction of vasa recta diameter. Real-time images of in situ vasa recta were recorded, and vasa recta diameters at pericyte and nonpericyte sites were measured offline. PGE2 and epoprostenol (a prostacyclin analog) evoked dilation of vasa recta specifically at pericyte sites, and PGE2 significantly attenuated pericyte-mediated constriction of vasa recta evoked by both endothelin-1 and ANG II. NSAIDs (indomethacin > SC-560 > celecoxib > meloxicam) evoked significantly greater constriction of vasa recta capillaries at pericyte sites than at nonpericyte sites, and indomethacin significantly attenuated the pericyte-mediated vasodilation of vasa recta evoked by PGE2, epoprostenol, bradykinin, and S-nitroso-N-acetyl-l-penicillamine. Moreover, a reduction in PGE2 was measured using an enzyme immune assay after superfusion of kidney slices with indomethacin. In addition, immunohistochemical techiques were used to demonstrate the population of EP receptors in the medulla. Collectively, these data demonstrate that pericytes are sensitive to changes in PGE2 concentration and may serve as the primary mechanism underlying NSAID-associated renal injury and/or further compound-associated tubular damage
    corecore