28 research outputs found

    NF-κB inhibition prevents acute shear stress-induced inflammation in the saphenous vein graft endothelium

    Get PDF
    The long saphenous vein (LSV) is commonly used as a conduit in coronary artery bypass grafting. However, long term patency remains limited by the development of vascular inflammation, intimal hyperplasia and accelerated atherosclerosis. The impact of acute exposure of venous endothelial cells (ECs) to acute arterial wall shear stress (WSS) in the arterial circulation, and the subsequent activation of inflammatory pathways, remain poorly defined. Here, we tested the hypothesis that acute exposure of venous ECs to high shear stress is associated with inflammatory responses that are regulated by NF-κB both in-vitro and ex-vivo. Analysis of the LSV endothelium revealed that activation of NF-κB occurred within 30 min after exposure to arterial rates of shear stress. Activation of NF-κB was associated with increased levels of CCL2 production and enhanced binding of monocytes in LSVECs exposed to 6 h acute arterial WSS. Consistent with this, ex vivo exposure of LSVs to acute arterial WSS promoted monocyte interactions with the vessel lumen. Inhibition of the NF-κB pathway prevented acute arterial WSS-induced CCL2 production and reduced monocyte adhesion, both in vitro and in human LSV ex vivo, demonstrating that this pathway is necessary for the induction of the acute arterial WSS-induced pro-inflammatory response. We have identified NF-κB as a critical regulator of acute endothelial inflammation in saphenous vein in response to acute arterial WSS. Localised endothelial-specific inhibition of the NF-κB pathway may be beneficial to prevent vein graft inflammation and consequent failure

    Vitamin D deficiency causes inward hypertrophic remodeling and alters vascular reactivity of rat cerebral arterioles

    Get PDF
    BACKGROUND AND PURPOSE: Vitamin D deficiency (VDD) is a global health problem, which can lead to several pathophysiological consequences including cardiovascular diseases. Its impact on the cerebrovascular system is not well understood. The goal of the present work was to examine the effects of VDD on the morphological, biomechanical and functional properties of cerebral arterioles. METHODS: Four-week-old male Wistar rats (n = 11 per group) were either fed with vitamin D deficient diet or received conventional rat chow with per os vitamin D supplementation. Cardiovascular parameters and hormone levels (testosterone, androstenedione, progesterone and 25-hydroxyvitamin D) were measured during the study. After 8 weeks of treatment anterior cerebral artery segments were prepared and their morphological, biomechanical and functional properties were examined using pressure microangiometry. Resorcin-fuchsin and smooth muscle actin staining were used to detect elastic fiber density and smooth muscle cell counts in the vessel wall, respectively. Sections were immunostained for eNOS and COX-2 as well. RESULTS: VDD markedly increased the wall thickness, the wall-to-lumen ratio and the wall cross-sectional area of arterioles as well as the number of smooth muscle cells in the tunica media. As a consequence, tangential wall stress was significantly lower in the VDD group. In addition, VDD increased the myogenic as well as the uridine 5'-triphosphate-induced tone and impaired bradykinin-induced relaxation. Decreased eNOS and increased COX-2 expression were also observed in the endothelium of VDD animals. CONCLUSIONS: VDD causes inward hypertrophic remodeling due to vascular smooth muscle cell proliferation and enhances the vessel tone probably because of increased vasoconstrictor prostanoid levels in young adult rats. In addition, the decreased eNOS expression results in endothelial dysfunction. These morphological and functional alterations can potentially compromise the cerebral circulation and lead to cerebrovascular disorders in VDD

    Bridging health technology assessment (HTA) with multicriteria decision analyses (MCDA): field testing of the EVIDEM framework for coverage decisions by a public payer in Canada

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Consistent healthcare decisionmaking requires systematic consideration of decision criteria and evidence available to inform them. This can be tackled by combining multicriteria decision analysis (MCDA) and Health Technology Assessment (HTA). The objective of this study was to field-test a decision support framework (EVIDEM), explore its utility to a drug advisory committee and test its reliability over time.</p> <p>Methods</p> <p>Tramadol for chronic non-cancer pain was selected by the health plan as a case study relevant to their context. Based on extensive literature review, a by-criterion HTA report was developed to provide synthesized evidence for each criterion of the framework (14 criteria for the MCDA Core Model and 6 qualitative criteria for the Contextual Tool). During workshop sessions, committee members tested the framework in three steps by assigning: 1) weights to each criterion of the MCDA Core Model representing individual perspective; 2) scores for tramadol for each criterion of the MCDA Core Model using synthesized data; and 3) qualitative impacts of criteria of the Contextual Tool on the appraisal. Utility and reliability of the approach were explored through discussion, survey and test-retest. Agreement between test and retest data was analyzed by calculating intra-rater correlation coefficients (ICCs) for weights, scores and MCDA value estimates.</p> <p>Results</p> <p>The framework was found useful by the drug advisory committee in supporting systematic consideration of a broad range of criteria to promote a consistent approach to appraising healthcare interventions. Directly integrated in the framework as a "by-criterion" HTA report, synthesized evidence for each criterion facilitated its consideration, although this was sometimes limited by lack of relevant data. Test-retest analysis showed fair to good consistency of weights, scores and MCDA value estimates at the individual level (ICC ranging from 0.676 to 0.698), thus lending some support for the reliability of the approach. Overall, committee members endorsed the inclusion of most framework criteria and revealed important areas of discussion, clarification and adaptation of the framework to the needs of the committee.</p> <p>Conclusions</p> <p>By promoting systematic consideration of all decision criteria and the underlying evidence, the framework allows a consistent approach to appraising healthcare interventions. Further testing and validation are needed to advance MCDA approaches in healthcare decisionmaking.</p

    Increased Membrane Cholesterol in Lymphocytes Diverts T-Cells toward an Inflammatory Response

    Get PDF
    Cell signaling for T-cell growth, differentiation, and apoptosis is initiated in the cholesterol-rich microdomains of the plasma membrane known as lipid rafts. Herein, we investigated whether enrichment of membrane cholesterol in lipid rafts affects antigen-specific CD4 T-helper cell functions. Enrichment of membrane cholesterol by 40–50% following squalene administration in mice was paralleled by an increased number of resting CD4 T helper cells in periphery. We also observed sensitization of the Th1 differentiation machinery through co-localization of IL-2Rα, IL-4Rα, and IL-12Rβ2 subunits with GM1 positive lipid rafts, and increased STAT-4 and STAT-5 phosphorylation following membrane cholesterol enrichment. Antigen stimulation or CD3/CD28 polyclonal stimulation of membrane cholesterol-enriched, resting CD4 T-cells followed a path of Th1 differentiation, which was more vigorous in the presence of increased IL-12 secretion by APCs enriched in membrane cholesterol. Enrichment of membrane cholesterol in antigen-specific, autoimmune Th1 cells fostered their organ-specific reactivity, as confirmed in an autoimmune mouse model for diabetes. However, membrane cholesterol enrichment in CD4+ Foxp3+ T-reg cells did not alter their suppressogenic function. These findings revealed a differential regulatory effect of membrane cholesterol on the function of CD4 T-cell subsets. This first suggests that membrane cholesterol could be a new therapeutic target to modulate the immune functions, and second that increased membrane cholesterol in various physiopathological conditions may bias the immune system toward an inflammatory Th1 type response

    The expression of the ACTH receptor

    No full text
    Adrenal glucocorticoid secretion is regulated by adrenocorticotropic hormone (ACTH) acting through a specific cell membrane receptor (ACTH-R). The ACTH-R is a member of the G protein superfamily-coupled receptors and belongs to the subfamily of melanocortin receptors. The ACTH-R is mainly expressed in the adrenocortical cells showing a restricted tissue specificity, although ACTH is recognized by the other four melanocortin receptors. The cloning of the ACTH-R was followed by the study of this gene in human diseases such as familial glucocorticoid deficiency (FGD) and adrenocortical tumors. FGD is a rare autosomal recessive disease characterized by glucocorticoid deficiency, elevated plasma ACTH levels and preserved renin/aldosterone secretion. This disorder has been ascribed to an impaired adrenal responsiveness to ACTH due to a defective ACTH-R, a defect in intracellular signal transduction or an abnormality in adrenal cortical development. Mutations of the ACTH-R have been described in patients with FGD in segregation with the disease. The functional characterization of these mutations has been prevented by difficulties in expressing human ACTH-R in cells that lack endogenous melanocortin receptor activity. To overcome these difficulties we used Y6 cells, a mutant variant of the Y1 cell line, which possesses a non-expressed ACTH-R gene allowing the functional study without any background activity. Our results demonstrated that the several mutations of the ACTH-R found in FGD result in an impaired cAMP response or loss of sensitivity to ACTH stimulation. An ACTH-binding study showed an impairment of ligand binding with loss of the high affinity site in most of the mutations studied
    corecore