27 research outputs found

    The insecure airway: a comparison of knots and commercial devices for securing endotracheal tubes

    Get PDF
    BACKGROUND: Endotracheal Tubes (ETTs) are commonly secured using adhesive tape, cloth tape, or commercial devices. The objectives of the study were (1) To compare degrees of movement of ETTs secured with 6 different commercial devices and (2) To compare movement of ETTs secured with cloth tape tied with 3 different knots (hitches). METHODS: A 17 cm diameter PVC tube with 14 mm "mouth" hole in the side served as a mannequin. ETTs were subjected to repeated jerks, using a cable and pulley system. Measurements: (1) Total movement of ETTs relative to "mouth" (measure used for devices) (2) Slippage of ETT through securing knot (measure used for knots). RESULTS: Among commercial devices, the Dale(® )showed less movement than other devices, although some differences between devices did not reach significance. Among knots, Magnus and Clove Hitches produced less slippage than the Cow Hitch, but these differences did not reach statistical significance. CONCLUSION: Among devices tested, the Dale(® )was most secure. Within the scope offered by the small sample sizes, there were no statistically significant differences between the knots in this study

    Computational geometry analysis of dendritic spines by structured illumination microscopy

    Get PDF
    We are currently short of methods that can extract objective parameters of dendritic spines useful for their categorization. Authors present in this study an automatic analytical pipeline for spine geometry using 3D-structured illumination microscopy, which can effectively extract many geometrical parameters of dendritic spines without bias and automatically categorize spine population based on their morphological feature

    Protected STED nanoscopy

    No full text

    An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice

    Get PDF
    Control over all internal and external degrees of freedom of molecules at the level of single quantum states will enable a series of fundamental studies in physics and chemistry. In particular, samples of ground-state molecules at ultralow temperatures and high number densities will facilitate new quantum-gas studies and future applications in quantum information science. However, high phase-space densities for molecular samples are not readily attainable because efficient cooling techniques such as laser cooling are lacking. Here we produce an ultracold and dense sample of molecules in a single hyperfine level of the rovibronic ground state with each molecule individually trapped in the motional ground state of an optical lattice well. Starting from a zero-temperature atomic Mott-insulator state with optimized double-site occupancy, weakly bound dimer molecules are efficiently associated on a Feshbach resonance and subsequently transferred to the rovibronic ground state by a stimulated four-photon process with >50% efficiency. The molecules are trapped in the lattice and have a lifetime of 8 s. Our results present a crucial step towards Bose–Einstein condensation of ground-state molecules and, when suitably generalized to polar heteronuclear molecules, the realization of dipolar quantum-gas phases in optical lattices

    Molecular physics: very cool molecular ions

    No full text
    Achieving full control over all internal and external degrees of freedom of a molecule has been a long-standing goal in molecular physics. Newly developed methods to prepare translationally, vibrationally and rotationally cold molecular ions have brought this target one step closer

    Observation of Feshbach resonances between alkali and closed-shell atoms

    Get PDF
    Magnetic Feshbach resonances allow control of the interactions between ultracold atoms1. They are an invaluable tool in studies of few-body and many-body physics2,3, and can be used to convert pairs of atoms into molecules4,5 by ramping an applied magnetic field across a resonance. Molecules formed from pairs of alkali atoms have been transferred to low-lying states, producing dipolar quantum gases6. There is great interest in making molecules formed from an alkali atom and a closed-shell atom such as ground-state Sr or Yb. Such molecules have both a strong electric dipole and an electron spin; they will open up new possibilities for designing quantum many-body systems7,8, and for tests of fundamental symmetries9. The crucial first step is to observe Feshbach resonances in the corresponding atomic mixtures. Very narrow resonances have been predicted theoretically10,11,12, but until now have eluded observation. Here we present the observation of magnetic Feshbach resonances of this type, for an alkali atom, Rb, interacting with ground-state Sr

    Implementing Quantum Gates and Algorithms in Ultracold Polar Molecules

    No full text
    We numerically investigate the implementation of small quantum algorithms, an arithmetic adder and the Grover search algorithm, in registers of ultracold polar molecules trapped in a lattice by concatenating intramolecular and intermolecular gates. The molecular states are modulated by the exposition to static electric and magnetic fields different for each molecule. The examples are carried out in a two-molecule case. Qubits are encoded either in rovibrational or in hyperfine states, and intermolecular gates involve states of neighboring molecules. Here we use pi pulses (i.e. laser pulses such that the integral of the product of the transition dipole moment and their envelope is equal to pi, thus ensuring a total population inversion between two states) and pulses designed by optimal control theory adapted to a multi-target problem to drive unitary transformations between the qubit states.info:eu-repo/semantics/publishe
    corecore