80 research outputs found

    Арап элифбесинде нешир этильген къырымтатар грамматикаларнынъ тенъештирме талили

    Get PDF
    Статья посвящена сопоставительному анализу имени существительного и глагола в арабографических грамматиках крымскотатарского языка.Стаття присвячена порівняльному аналізу іменника і дієслова в арабографічних граматиках кримськотатарської мови.The article annotation is devoted to the comparative analysis of the noun and the verb in arabographis grammars of the Crimean Tatar language

    Contribution of Alaskan glaciers to sea level rise derived from satellite imagery

    Get PDF
    International audienceOver the last 50 years, retreating glaciers and ice caps (GIC) contributed 0.5 mm/yr to sea level rises (SLR), and one third is believed to originate from ice masses bordering the Gulf of Alaska. However, these estimates of ice wastage in Alaska are based on methods that measure a limited number of glaciers and extrapolate the results to estimate ice loss for the many thousands of others. How these methods capture the complex pattern of decadal elevation changes at the scale of individual glacier and mountain range is unclear. Here, combining a comprehensive glacier inventory with elevation changes derived from sequential digital elevation models (DEMs), we found that, between 1962 and 2006, Alaskan glaciers lost 41.9 ± 8.6 km**3/yr water equivalent (w.e.) and contributed 0.12±0.02 mm/yr to SLR. Our ice loss is 34% lower than previous estimates. Reasons for our lower values include the higher spatial resolution of our glacier inventory and the reduction of ice thinning under debris and at the glacier margins which were not resolved in earlier work. Estimates of mass loss from GIC in other mountain regions could be subject to similar revisions

    Greenland ice sheet surface mass loss: recent developments in observation and modeling

    Get PDF
    Surface processes currently dominate Greenland ice sheet (GrIS) mass loss. We review recent developments in the observation and modelling of GrIS surface mass balance (SMB), published after the July 2012 deadline for the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5). Since IPCC AR5 our understanding of GrIS SMB has further improved, but new observational and model studies have also revealed that temporal and spatial variability of many processes are still poorly quantified and understood, e.g. bio-albedo, the formation of ice lenses and their impact on lateral meltwater transport, heterogeneous vertical meltwater transport (‘piping’), the impact of atmospheric circulation changes and mixed-phase clouds on the surface energy balance and the magnitude of turbulent heat exchange over rough ice surfaces. As a result, these processes are only schematically or not at all included in models that are currently used to assess and predict future GrIS surface mass loss

    Physical Properties of Water

    No full text

    No ice lost in the Karakoram

    No full text

    Atmospheric science: Glaciers between two drivers

    Full text link
    It is assumed that the monsoon is the dominant influence on Himalayan glaciers. However, a study now investigates the importance of the mid-latitude Westerlies and shows that glacier changes can be triggered from afar

    Interior of the Earth

    No full text
    corecore