3 research outputs found

    Evidence for somatic translocation during potato dihaploid induction

    No full text
    Potato dihaploid PDH55 (Solatium tuberosum) is exclusively euploid (2n = 24) but apparently contains and expresses DNA from dihaploid inducer IVP48 (S. phureja). Genomic in situ hybridization (GISH) suggested IVP48 DNA incorporated stably into PDH55 by somatic translocation. This finding has two important implications. Firstly, the long-held implicit assumption that euploid dihaploids produced by dihaploid inducers are pure S. tuberosum seems incorrect. This may complicate meiotic, genetical and molecular studies involving potato dihaploids. Secondly, if such translocations are not rare, the phenomenon may offer a novel way to introduce useful traits directly from wild dihaploid-inducing species into S. tuberosum. © 1995 The Genetical Society of Great Britain

    Systematics, Diversity, Genetics, and Evolution of Wild and Cultivated Potatoes

    No full text

    Study of nicotinic acetylcholine receptors on cultured antennal lobe neurones from adult honeybee brains.

    No full text
    In insects, acetylcholine (ACh) is the main neurotransmitter, and nicotinic acetylcholine receptors (nAChRs) mediate fast cholinergic synaptic transmission. In the honeybee, nAChRs are expressed in diverse structures including the primary olfactory centres of the brain, the antennal lobes (AL) and the mushroom bodies. Whole-cell, voltage-clamp recordings were used to characterize the nAChRs present on cultured AL cells from adult honeybee, Apis mellifera. In 90% of the cells, applications of ACh induced fast inward currents that desensitized slowly. The classical nicotinic agonists nicotine and imidacloprid elicited respectively 45 and 43% of the maximum ACh-induced currents. The ACh-elicited currents were blocked by nicotinic antagonists methyllycaconitine, dihydroxy-beta-erythroidine and alpha-bungarotoxin. The nAChRs on adult AL cells are cation permeable channels. Our data indicate the existence of functional nAChRs on adult AL cells that differ from nAChRs on pupal Kenyon cells from mushroom bodies by their pharmacological profile and ionic permeability, suggesting that these receptors could be implicated in different functions
    corecore