16 research outputs found

    Climate adaptation, drought susceptibility, and genomic-informed predictions of future climate refugia for the Australian forest tree Eucalyptus globulus

    Get PDF
    Understanding the capacity of forest tree species to adapt to climate change is of increasing importance for managing forest genetic resources. Through a genomics approach, we modelled spatial variation in climate adaptation within the Australian temperate forest tree Eucalyptus globulus, identified putative climate drivers of this genomic variation, and predicted locations of future climate refugia and populations at-risk of future maladaptation. Using 812,158 SNPs across 130 individuals from 30 populations (i.e., localities) spanning the species’ natural range, a gradientForest algorithm found 1177 SNPs associated with locality variation in home-site climate (climate-SNPs), putatively linking them to climate adaptation. Very few climate-SNPs were associated with population-level variation in drought susceptibility, signalling the multi-faceted nature and complexity of climate adaptation. Redundancy analysis (RDA) showed 24% of the climate-SNP variation could be explained by annual precipitation, isothermality, and maximum temperature of the warmest month. Spatial predictions of the RDA climate vectors associated with climate-SNPs allowed mapping of genomically informed climate selective surfaces across the species’ range under contemporary and projected future climates. These surfaces suggest over 50% of the current distribution of E. globulus will be outside the modelled adaptive range by 2070 and at risk of climate maladaptation. Such surfaces present a new integrated approach for natural resource managers to capture adaptive genetic variation and plan translocations in the face of climate change

    Patterns of genomic diversity and linkage disequilibrium across the disjunct range of the Australian forest tree Eucalyptus globulus

    No full text
    Abstract The evolutionary trajectory of a population both influences and is influenced by characteristics of its genome. A disjunct population, for example is likely to exhibit genomic features distinct from those of continuous populations, reflecting its specific evolutionary history and influencing future recombination outcomes. We examined genetic diversity, population differentiation and linkage disequilibrium (LD) across the highly disjunct native range of the Australian forest tree Eucalyptus globulus, using 203,337 SNPs genotyped in 136 trees spanning seven races. We found support for four broad genetic groups, with moderate FST, high allelic diversity and genome-wide LD decaying to an r2 of 0.2 within 4 kb on average. These results are broadly similar to those reported previously in Eucalyptus species and support the ‘ring’ model of migration proposed for E. globulus. However, two of the races (Otways and South-eastern Tasmania) exhibited a much slower decay of LD with physical distance than the others and were also the most differentiated and least diverse, which may reflect the effects of selective sweeps and/or genetic bottlenecks experienced in their evolutionary history. We also show that FST and rates of LD vary within and between chromosomes across all races, suggestive of recombination outcomes influenced by genomic features, hybridization or selection. The results obtained from studying this species serve to illustrate the genomic effects of population disjunction and further contribute to the characterisation of genomes of woody genera

    Climate adaptation, drought susceptibility, and genomic-informed predictions of future climate refugia for the Australian forest tree Eucalyptus globulus

    No full text
    Understanding the capacity of forest tree species to adapt to climate change is of increasing importance for managing forest genetic resources. Through a genomics approach, we modelled spatial variation in climate adaptation within the Australian temperate forest tree Eucalyptus globulus, identified putative climate drivers of this genomic variation, and predicted locations of future climate refugia and populations at-risk of future maladaptation. Using 812,158 SNPs across 130 individuals from 30 populations (i.e., localities) spanning the species’ natural range, a gradientForest algorithm found 1177 SNPs associated with locality variation in home-site climate (climate-SNPs), putatively linking them to climate adaptation. Very few climate-SNPs were associated with population-level variation in drought susceptibility, signalling the multi-faceted nature and complexity of climate adaptation. Redundancy analysis (RDA) showed 24% of the climate-SNP variation could be explained by annual precipitation, isothermality, and maximum temperature of the warmest month. Spatial predictions of the RDA climate vectors associated with climate-SNPs allowed mapping of genomically informed climate selective surfaces across the species’ range under contemporary and projected future climates. These surfaces suggest over 50% of the current distribution of E. globulus will be outside the modelled adaptive range by 2070 and at risk of climate maladaptation. Such surfaces present a new integrated approach for natural resource managers to capture adaptive genetic variation and plan translocations in the face of climate change

    Chloroplast variation is incongruent with classification of the Australian bloodwood eucalypts (genus Corymbia, family Myrtaceae)

    Get PDF
    Previous molecular phylogenetic analyses have resolved the Australian bloodwood eucalypt genus Corymbia (~100 species) as either monophyletic or paraphyletic with respect to Angophora (9-10 species). Here we assess relationships of Corymbia and Angophora using a large dataset of chloroplast DNA sequences (121,016 base pairs; from 90 accessions representing 55 Corymbia and 8 Angophora species, plus 33 accessions of related genera), skimmed from high throughput sequencing of genomic DNA, and compare results with new analyses of nuclear ITS sequences (119 accessions) from previous studies. Maximum likelihood and maximum parsimony analyses of cpDNA resolve well supported trees with most nodes having >95% bootstrap support. These trees strongly reject monophyly of Corymbia, its two subgenera (Corymbia and Blakella), most taxonomic sections (Abbreviatae, Maculatae, Naviculares, Septentrionales), and several species. ITS trees weakly indicate paraphyly of Corymbia (bootstrap support <50% for maximum likelihood, and 71% for parsimony), but are highly incongruent with the cpDNA analyses, in that they support monophyly of both subgenera and some taxonomic sections of Corymbia. The striking incongruence between cpDNA trees and both morphological taxonomy and ITS trees is attributed largely to chloroplast introgression between taxa, because of geographic sharing of chloroplast clades across taxonomic groups. Such introgression has been widely inferred in studies of the related genus Eucalyptus. This is the first report of its likely prevalence in Corymbia and Angophora, but this is consistent with previous morphological inferences of hybridisation between species. Our findings (based on continent-wide sampling) highlight a need for more focussed studies to assess the extent of hybridisation and introgression in the evolutionary history of these genera, and that critical testing of the classification of Corymbia and Angophora requires additional sequence data from nuclear genomes

    Geographical patterns of variation in susceptibility of Eucalyptus globulus and Eucalyptus obliqua to myrtle rust

    No full text
    Myrtle rust, caused by the pathogen Austropuccinia psidii, is a disease affecting numerous species of Myrtaceae around the globe. Many Australian ecosystems are dominated by Myrtaceae, making them, along with the industries that rely on them, particularly vulnerable to this disease. With over 800 endemic species, Eucalyptus is a major genus within the Myrtaceae in Australia. Wide variation in response to A. psidii infection, from extreme susceptibility to resistance, has been reported among Eucalyptus species in which any pre-formed resistance to this invasive pathogen is unexpected. This study aims to define and contrast geographical patterns of variation in rust susceptibility within the overlapping, natural ranges of Eucalyptus globulus and Eucalyptus obliqua, two commercially and ecologically important species from different Eucalyptus subgenera. Phenotypic disease screening of seedlings of E. globulus races and E. obliqua forest districts (defined geographically) showed E. obliqua to be more susceptible than E. globulus with significant differences in disease susceptibility and symptomatic trait expression. Eucalyptus globulus showed a trend for decreased susceptibility to A. psidii from south- to north-eastern Tasmania, eastwards along the Otway Ranges and southward from the Strzelecki Ranges to the Wilson Promontory Lighthouse in Victoria, but no such geographical patterns were observed within E. obliqua. No significant correlations were found between climatic conditions (i.e. rainfall, temperature and elevation) and rust susceptibility at provenance levels in either species. Taken together, these results support a hypothesis that population divergence in resistance to A. psidii has not been driven by climate

    Genome-wide association study of myrtle rust (Austropuccinia psidii) resistance in Eucalyptus obliqua (subgenus Eucalyptus)

    No full text
    Myrtle rust (caused by Austropuccinia psidii Beenken) is exotic to Australia, yet specific resistance is present in a range of naïve myrtaceous host plants. Resistance to myrtle rust is primarily quantitative in nature and controlled by multiple interacting loci. We undertook a genome-wide association study (GWAS) to discover relationships between nuclear genomic sequence variation and multiple aspects of resistance to A. psidii in Eucalyptus obliqua, a representative species from subgenus Eucalyptus. Sequence variation was assessed with respect to numeric severity, binary symptomatic, hypersensitive, and pustulation responses to inoculation of seedlings with A. psidii. A total of 1.13 million, single-nucleotide polymorphisms (SNPs) were tested for association with the rust resistance responses of 637 phenotyped E. obliqua seedlings, each from different, single mother tree seedlots. Thirty-three highly significant SNP-trait associations were detected, of which 26 associated with the binary symptomatic/asymptomatic response to A. psidii. Comparison of the genomic position of these SNPs with rust resistance loci (Ppr1-5), previously reported in species from subgenus Symphyomyrtus, suggested that several were positioned near the major Ppr1 locus and other Ppr loci. This study provides the first integrated genomic view of A. psidii resistance across the Eucalyptus subgenera and provides the foundation for discovering key resistance genes for use in marker-based resistance breeding

    Patterns of genomic diversity and linkage disequilibrium across the disjunct range of the Australian forest tree Eucalyptus globulus

    No full text
    The evolutionary trajectory of a population both influences and is influenced by characteristics of its genome. A disjunct population, for example is likely to exhibit genomic features distinct from those of continuous populations, reflecting its specific evolutionary history and influencing future recombination outcomes. We examined genetic diversity, population differentiation and linkage disequilibrium (LD) across the highly disjunct native range of the Australian forest tree Eucalyptus globulus, using 203,337 SNPs genotyped in 136 trees spanning seven races. We found support for four broad genetic groups, with moderate FST, high allelic diversity and genome-wide LD decaying to an r2 of 0.2 within 4 kb on average. These results are broadly similar to those reported previously in Eucalyptus species and support the ‘ring’ model of migration proposed for E. globulus. However, two of the races (Otways and South-eastern Tasmania) exhibited a much slower decay of LD with physical distance than the others and were also the most differentiated and least diverse, which may reflect the effects of selective sweeps and/or genetic bottlenecks experienced in their evolutionary history. We also show that FST and rates of LD vary within and between chromosomes across all races, suggestive of recombination outcomes influenced by genomic features, hybridization or selection. The results obtained from studying this species serve to illustrate the genomic effects of population disjunction and further contribute to the characterisation of genomes of woody genera
    corecore