33 research outputs found

    Living on Cold Substrata: New Insights and Approaches in the Study of Microphytobenthos Ecophysiology and Ecology in Kongsfjorden

    Get PDF
    Organisms in shallow waters at high latitudes are under pressure due to climate change. These areas are typically inhabited by microphytobenthos (MPB) communities, composed mainly of diatoms. Only sparse information is available on the ecophysiology and acclimation processes within MPBs from Arctic regions. The physico-chemical environment and the ecology and ecophysiology of benthic diatoms in Kongsfjorden (Svalbard, Norway) are addressed in this review. MPB biofilms cover extensive areas of sediment. They show high rates of primary production, stabilise sediment surfaces against erosion under hydrodynamic forces,and affect the exchange of oxygen and nutrients across the sediment-water interface. Additionally, this phototrophic community represents a key component in the functioning of the Kongsfjorden trophic web, particularly as a major food source for benthic suspension- or deposit-feeders. MPB in Kongsfjorden is confronted with pronounced seasonal variations in solar radiation, low temperatures, and hyposaline (meltwater) conditions in summer, as well as long periods of ice and snow cover in winter. From the few data available, it seems that these organisms can easily cope with these environmental extremes. The underlying physiological mechanisms that allow growth and photosynthesis to continue under widely varying abiotic parameters, along with vertical migration and heterotrophy, and biochemical features such as a pronounced fatty-acid metabolism and silicate incorporation are discussed. Existing gaps in our knowledge of benthic diatoms in Kongsfjorden, such as the chemical ecology of biotic interactions, need to be filled. In addition, since many of the underlying molecular acclimation mechanisms are poorly understood, modern approaches based on transcriptomics, proteomics, and/or metabolomics, in conjunction with cell biological and biochemical techniques, are urgently needed. Climate change models for the Arctic predict other multifactorial stressors, such as an increase in precipitation and permafrost thawing, with consequences for the shallow-water regions. Both precipitation and permafrost thawing are likely to increase nutrient-enriched, turbid freshwater runoff and may locally counteract the expected increase in coastal radiation availability. So far, complex interactions among factors, as well as the full genetic diversity and physiological plasticity of Arctic benthic diatoms, have only rarely been considered. The limited existing information is described and discussed in this review

    Intracellular versus extracellular iron accumulation in freshwater periphytic mats across a mine water treatment lagoon

    No full text
    Despite the importance of periphyton–metal interactions in bioremediation schemes and in phosphorus (P) cycling, the processes controlling metal accumulation in periphytic mats are still poorly understood. Iron (Fe) accumulation in periphytic mats was examined across a Fe settlement lagoon receiving mine drainage in Scotland, UK, between March and June 2008. Quantification and mapping of intracellular and extracellular Fe concentrations in periphyton samples using scanning electron microscopy–energy dispersive spectroscopy suggested that Fe accumulation was dominated by the association of Fe-rich precipitates with the extracellular polymeric substances matrix, rather than biotic uptake. Intracellular Fe concentrations were significantly higher in periphyton samples exposed to the highest dissolved Fe concentrations. Neither intracellular nor extracellular Fe concentrations were significantly affected by light availability or cell density. While diatoms dominated the periphyton communities there was no significant association of diatom functional groups with Fe accumulation, indicating that community composition may not affect the function of periphytic mats with respect to Fe removal. Scale-up calculations based on the mean measured Fe accumulation rate by periphyton substrates of 0.021 g m−2 day−1 showed that exposure of large surface areas of periphyton substrate in the settlement lagoon would only increase the Fe removal efficiency of the lagoon by c.1%

    Weak diurnal changes in the biochemical properties and benthic macrofauna of urbanised mangrove forests and mudflats

    No full text
    Diurnal changes in the biochemical properties and the benthic macrofaunal assemblage of sediments in urbanised mangrove forests and their adjacent mudflats in Sydney Harbour were investigated. Behavioural and physiological changes in the microphytobenthos between day and night were predicted to cause diurnal changes in the micro-scale depth distribution of chlorophylls a and b and colloidal carbohydrate. In addition, because macrofauna can alter sediment properties, diurnal changes in the macrofaunal assemblages were investigated. The microphytobenthos at the study sites were predominantly filamentous green algae, although diatoms were present. Samples for biochemical analysis were collected from the top 2 mm of sediment using mini-cryolanders, during low tide in the day and at night. Three biochemical properties of the sediments were measured spectrophotometrically: chlorophylls a and b (surrogate for microphytobenthos biomass) and colloidal carbohydrate. The amount of chlorophylls tended to be less at night than during the day, but site to site variability was large and these differences were generally small and not significant. Depth profiles indicated that there was some redistribution of pigments in the surface 2 mm between day and night, possibly due to migration of microphytobenthos or physiological changes. There was no significant difference in chlorophylls between the mangrove forest and adjacent mudflat, with the exception of chlorophyll b at one sampling time, which was larger in the mangrove forest than on the mudflat. Colloidal carbohydrate was significantly larger in the mangrove forest and significantly less on the mudflat during the day at one site at one time, but otherwise showed no significant differences between day and night or between the mangrove forest and mudflat. Whilst there were some differences in the benthic macrofaunal assemblages between day and night, these differences were only significant for spionids and polychaetes at one time. There were, however, significant differences in assemblages of benthic macrofauna between the mangrove forest and mudflat, probably due to structural differences between these habitats such as the presence of pneumatophores, shade and leaf litter. In summary, there was some minor diurnal variation in the measured biochemical properties of the sediment, but not in the macrofaunal assemblage. Diurnal changes should, therefore, be considered when investigating biochemical properties in these habitats, but they are not a major influence. These findings contrast to previous studies on diatom dominated mudflats in Europe, where stronger diurnal changes in biochemical properties were found. Diurnal changes in the macrofauna assemblages were largely insignificant and therefore could not explain the changes in the biochemical properties. Diurnal effects on the macrofauna in these habitats are more likely to be via altered behaviours and this requires further investigation
    corecore