37 research outputs found

    CX3CR1 Is Expressed by Human B Lymphocytes and Meditates CX3CL1 Driven Chemotaxis of Tonsil Centrocytes

    Get PDF
    Background: Fractalkine/CX(3)CL1, a surface chemokine, binds to CX(3)CR1 expressed by different lymphocyte subsets. Since CX(3)CL1 has been detected in the germinal centres of secondary lymphoid tissue, in this study we have investigated CX(3)CR1 expression and function in human naive, germinal centre and memory B cells isolated from tonsil or peripheral blood.Methodology/Principal Findings: We demonstrate unambiguously that highly purified human B cells from tonsil and peripheral blood expressed CX(3)CR1 at mRNA and protein levels as assessed by quantitative PCR, flow cytometry and competition binding assays. In particular, naive, germinal centre and memory B cells expressed CX(3)CR1 but only germinal centre B cells were attracted by soluble CX(3)CL1 in a transwell assay. CX(3)CL1 signalling in germinal centre B cells involved PI3K, Erk1/2, p38, and Src phosphorylation, as assessed by Western blot experiments. CX(3)CR1(+) germinal centre B cells were devoid of centroblasts and enriched for centrocytes that migrated to soluble CX(3)CL1. ELISA assay showed that soluble CX(3)CL1 was secreted constitutively by follicular dendritic cells and T follicular helper cells, two cell populations homing in the germinal centre light zone as centrocytes. At variance with that observed in humans, soluble CX(3)CL1 did not attract spleen B cells from wild type mice. OVA immunized CX(3)CR1-/- or CX(3)CL1-/- mice showed significantly decreased specific IgG production compared to wild type mice.Conclusion/Significance: We propose a model whereby human follicular dendritic cells and T follicular helper cells release in the light zone of germinal centre soluble CX(3)CL1 that attracts centrocytes. The functional implications of these results warrant further investigation

    Natural and Vaccine-Mediated Immunity to Salmonella Typhimurium is Impaired by the Helminth Nippostrongylus brasiliensis

    Get PDF
    The impact of exposure to multiple pathogens concurrently or consecutively on immune function is unclear. Here, immune responses induced by combinations of the bacterium Salmonella Typhimurium (STm) and the helminth Nippostrongylus brasiliensis (Nb), which causes a murine hookworm infection and an experimental porin protein vaccine against STm, were examined. Mice infected with both STm and Nb induced similar numbers of Th1 and Th2 lymphocytes compared with singly infected mice, as determined by flow cytometry, although lower levels of secreted Th2, but not Th1 cytokines were detected by ELISA after re-stimulation of splenocytes. Furthermore, the density of FoxP3+ T cells in the T zone of co-infected mice was lower compared to mice that only received Nb, but was greater than those that received STm. This reflected the intermediate levels of IL-10 detected from splenocytes. Co-infection compromised clearance of both pathogens, with worms still detectable in mice weeks after they were cleared in the control group. Despite altered control of bacterial and helminth colonization in co-infected mice, robust extrafollicular Th1 and Th2-reflecting immunoglobulin-switching profiles were detected, with IgG2a, IgG1 and IgE plasma cells all detected in parallel. Whilst extrafollicular antibody responses were maintained in the first weeks after co-infection, the GC response was less than that in mice infected with Nb only. Nb infection resulted in some abrogation of the longer-term development of anti-STm IgG responses. This suggested that prior Nb infection may modulate the induction of protective antibody responses to vaccination. To assess this we immunized mice with porins, which confer protection in an antibody-dependent manner, before challenging with STm. Mice that had resolved a Nb infection prior to immunization induced less anti-porin IgG and had compromised protection against infection. These findings demonstrate that co-infection can radically alter the development of protective immunity during natural infection and in response to immunization

    The role of sex in the pathophysiology of pulmonary hypertension

    Get PDF
    Pulmonary arterial hypertension (PAH) is a progressive disease characterised by increased pulmonary vascular resistance and pulmonary artery remodelling as result of increased vascular tone and vascular cell proliferation, respectively. Eventually, this leads to right heart failure. Heritable PAH is caused by a mutation in the bone morphogenetic protein receptor-II (BMPR-II). Female susceptibility to PAH has been known for some time, and most recent figures show a female-to-male ratio of 4:1. Variations in the female sex hormone estrogen and estrogen metabolism modify FPAH risk, and penetrance of the disease in BMPR-II mutation carriers is increased in females. Several lines of evidence point towards estrogen being pathogenic in the pulmonary circulation, and thus increasing the risk of females developing PAH. Recent studies have also suggested that estrogen metabolism may be crucial in the development and progression of PAH with studies indicating that downstream metabolites such as 16α-hydroxyestrone are upregulated in several forms of experimental pulmonary hypertension (PH) and can cause pulmonary artery smooth muscle cell proliferation and subsequent vascular remodelling. Conversely, other estrogen metabolites such as 2-methoxyestradiol have been shown to be protective in the context of PAH. Estrogen may also upregulate the signalling pathways of other key mediators of PAH such as serotonin

    Effects of supervised aerobic and strength training in overweight and grade I obese pregnant women on maternal and foetal health markers: the GESTAFIT randomized controlled trial

    Full text link

    Pathophysiology of T follicular helper cells in humans and mice

    No full text
    Follicular helper T cells (TFH cells) compose a heterogeneous subset of CD4(+) T cells that induce the differentiation of B cells into plasma cells and memory cells. They are found within and in proximity to germinal centers in secondary lymphoid organs, and their memory compartment also circulates in the blood. Our knowledge on the biology of TFH cells has increased significantly during the past decade, largely as a result of mouse studies. However, recent studies on human TFH cells isolated from lymphoid organ and blood samples and recent observations on the developmental mechanism of human TFH cells have revealed both similarities and differences between human and mouse TFH cells. Here we present the similarities and differences between mouse and human lymphoid organ-resident TFH cells and discuss the role of TFH cells in response to vaccines and in disease pathogenesis.Supported by the US National Institutes of Health (U19-AI057234, U19-AI082715 and U19-AI089987), the Alliance for Lupus Research, the Baylor Health Care System (H.U.) and the Australian National Health and Medical Research Council (C.G.V.)

    Protection of mice deficient in mature B cells from West Nile virus infection by passive and active immunization.

    Get PDF
    B cell activating factor receptor (BAFFR)-/- mice have a profound reduction in mature B cells, but unlike μMT mice, they have normal numbers of newly formed, immature B cells. Using a West Nile virus (WNV) challenge model that requires antibodies (Abs) for protection, we found that unlike wild-type (WT) mice, BAFFR-/- mice were highly susceptible to WNV and succumbed to infection within 8 to 12 days after subcutaneous virus challenge. Although mature B cells were required to protect against lethal infection, infected BAFFR-/- mice had reduced WNV E-specific IgG responses and neutralizing Abs. Passive transfer of immune sera from previously infected WT mice rescued BAFFR-/- and fully B cell-deficient μMT mice, but unlike μMT mice that died around 30 days post-infection, BAFFR-/- mice survived, developed WNV-specific IgG Abs and overcame a second WNV challenge. Remarkably, protective immunity could be induced in mature B cell-deficient mice. Administration of a WNV E-anti-CD180 conjugate vaccine 30 days prior to WNV infection induced Ab responses that protected against lethal infection in BAFFR-/- mice but not in μMT mice. Thus, the immature B cells present in BAFFR-/- and not μMT mice contribute to protective antiviral immunity. A CD180-based vaccine may promote immunity in immunocompromised individuals
    corecore