67 research outputs found

    Rationale, design and population baseline characteristics of the PERFORM Vascular Project: an ancillary study of the Prevention of cerebrovascular and cardiovascular Events of ischemic origin with teRutroban in patients with a history oF ischemic strOke or tRansient ischeMic attack (PERFORM) trial

    Get PDF
    <p><b>Purpose</b></p> <p>PERFORM is exploring the efficacy of terutroban versus aspirin for secondary prevention in patients with a history of ischemic stroke or transient ischemic attacks (TIAs). The PERFORM Vascular Project will evaluate the effect of terutroban on progression of atherosclerosis, as assessed by change in carotid intima-media thickness (CIMT) in a subgroup of patients.</p> <p><b>Methods and results</b></p> <p>The Vascular Project includes structural (CIMT, carotid plaques) and functional (carotid stiffness) vascular studies in all patients showing at least one carotid plaque at entry. Expected mean follow-up is 36 months. Primary endpoint is rate of change of CIMT. Secondary endpoints include emergent plaques and assessment of carotid stiffness. 1,100 patients are required for 90% statistical power to detect treatment-related CIMT difference of 0.025 mm. The first patient was randomized in April 2006.</p> <p><b>Conclusions</b></p> <p>The PERFORM Vascular Project will investigate terutroban’s effect on vascular structure and function in patients with a history of ischemic stroke or TIAs.</p&gt

    Non-invasive imaging of atherosclerotic plaque macrophage in a rabbit model with F-18 FDG PET: a histopathological correlation

    Get PDF
    BACKGROUND: Coronary atherosclerosis and its thrombotic complications are the major cause of mortality and morbidity throughout the industrialized world. Thrombosis on disrupted atherosclerotic plaques plays a key role in the onset of acute coronary syndromes. Macrophages density is one of the most critical compositions of plaque in both plaque vulnerability and thrombogenicity upon rupture. It has been shown that macrophages have a high uptake of (18)F-FDG (FDG). We studied the correlation of FDG uptake with histopathological macrophage accumulation in atherosclerotic plaques in a rabbit model. METHODS: Atherosclerosis was induced in rabbits (n = 6) by a combination of atherogenic diet and balloon denudation of the aorta. PET imaging was performed at baseline and 2 months after atherogenic diet and coregistered with magnetic resonance (MR) imaging. Normal (n = 3) rabbits served as controls. FDG uptake by the thoracic aorta was expressed as concentration (μCi/ml) and the ratio of aortic uptake-to-blood radioactivity. FDG uptake and RAM-11 antibody positive areas were analyzed in descending aorta. RESULTS: Atherosclerotic aortas showed significantly higher uptake of FDG than normal aortas. The correlation of aortic FDG uptake with macrophage areas assessed by histopathology was statistically significant although it was not high (r = 0.48, p < 0.0001). When uptake was expressed as the ratio of aortic uptake-to-blood activity, it correlated better (r = 0.80, p < 0.0001) with the macrophage areas, due to the correction for residual blood FDG activity. CONCLUSION: PET FDG activity correlated with macrophage content within aortic atherosclerosis. This imaging approach might serve as a useful non-invasive imaging technique and potentially permit monitoring of relative changes in inflammation within the atherosclerotic lesion

    Weighted gene coexpression network analysis strategies applied to mouse weight

    Get PDF
    Systems-oriented genetic approaches that incorporate gene expression and genotype data are valuable in the quest for genetic regulatory loci underlying complex traits. Gene coexpression network analysis lends itself to identification of entire groups of differentially regulated genes—a highly relevant endeavor in finding the underpinnings of complex traits that are, by definition, polygenic in nature. Here we describe one such approach based on liver gene expression and genotype data from an F2 mouse intercross utilizing weighted gene coexpression network analysis (WGCNA) of gene expression data to identify physiologically relevant modules. We describe two strategies: single-network analysis and differential network analysis. Single-network analysis reveals the presence of a physiologically interesting module that can be found in two distinct mouse crosses. Module quantitative trait loci (mQTLs) that perturb this module were discovered. In addition, we report a list of genetic drivers for this module. Differential network analysis reveals differences in connectivity and module structure between two networks based on the liver expression data of lean and obese mice. Functional annotation of these genes suggests a biological pathway involving epidermal growth factor (EGF). Our results demonstrate the utility of WGCNA in identifying genetic drivers and in finding genetic pathways represented by gene modules. These examples provide evidence that integration of network properties may well help chart the path across the gene–trait chasm

    Sudden cardiac death and pump failure death prediction in chronic heart failure by combining ECG and clinical markers in an integrated risk model

    Get PDF
    BACKGROUND: Sudden cardiac death (SCD) and pump failure death (PFD) are common endpoints in chronic heart failure (CHF) patients, but prevention strategies are different. Currently used tools to specifically predict these endpoints are limited. We developed risk models to specifically assess SCD and PFD risk in CHF by combining ECG markers and clinical variables. METHODS: The relation of clinical and ECG markers with SCD and PFD risk was assessed in 597 patients enrolled in the MUSIC (MUerte Súbita en Insuficiencia Cardiaca) study. ECG indices included: turbulence slope (TS), reflecting autonomic dysfunction; T-wave alternans (TWA), reflecting ventricular repolarization instability; and T-peak-to-end restitution (ΔαTpe) and T-wave morphology restitution (TMR), both reflecting changes in dispersion of repolarization due to heart rate changes. Standard clinical indices were also included. RESULTS: The indices with the greatest SCD prognostic impact were gender, New York Heart Association (NYHA) class, left ventricular ejection fraction, TWA, ΔαTpe and TMR. For PFD, the indices were diabetes, NYHA class, ΔαTpe and TS. Using a model with only clinical variables, the hazard ratios (HRs) for SCD and PFD for patients in the high-risk group (fifth quintile of risk score) with respect to patients in the low-risk group (first and second quintiles of risk score) were both greater than 4. HRs for SCD and PFD increased to 9 and 11 when using a model including only ECG markers, and to 14 and 13, when combining clinical and ECG markers. CONCLUSION: The inclusion of ECG markers capturing complementary pro-arrhythmic and pump failure mechanisms into risk models based only on standard clinical variables substantially improves prediction of SCD and PFD in CHF patients

    Left Atrial Appendage and Closure

    No full text

    Left Atrial Appendage Remodeling After Lariat Left Atrial Appendage Ligation

    No full text
    corecore