520 research outputs found

    Realistic loophole-free Bell test with atom-photon entanglement

    Full text link
    The establishment of nonlocal correlations, obtained through the violation of a Bell inequality, is not only important from a fundamental point of view, but constitutes the basis for device-independent quantum information technologies. Although several nonlocality tests have been performed so far, all of them suffered from either the locality or the detection loopholes. Recent studies have suggested that the use of atom-photon entanglement can lead to Bell inequality violations with moderate transmission and detection efficiencies. In this paper we propose an experimental setup realizing a simple atom-photon entangled state that, under realistic experimental parameters available to date, achieves a significant violation of the Clauser-Horn-Shimony-Holt inequality. Most importantly, the violation remains when considering typical detection efficiencies and losses due to required propagation distances.Comment: 21 pages, 5 figures, 3 table, to appear in Nature Com

    A surface-patterned chip as a strong source of ultracold atoms for quantum technologies

    Get PDF
    Laser-cooled atoms are central to modern precision measurements. They are also increasingly important as an enabling technology for experimental cavity quantum electrodynamics, quantum information processing and matter–wave interferometry. Although significant progress has been made in miniaturizing atomic metrological devices, these are limited in accuracy by their use of hot atomic ensembles and buffer gases. Advances have also been made in producing portable apparatus that benefits from the advantages of atoms in the microkelvin regime. However, simplifying atomic cooling and loading using microfabrication technology has proved difficult. In this Letter we address this problem, realizing an atom chip that enables the integration of laser cooling and trapping into a compact apparatus. Our source delivers ten thousand times more atoms than previous magneto-optical traps with microfabricated optics and, for the first time, can reach sub-Doppler temperatures. Moreover, the same chip design offers a simple way to form stable optical lattices. These features, combined with simplicity of fabrication and ease of operation, make these new traps a key advance in the development of cold-atom technology for high-accuracy, portable measurement devices

    Experimental loophole-free violation of a Bell inequality using entangled electron spins separated by 1.3 km

    Get PDF
    For more than 80 years, the counterintuitive predictions of quantum theory have stimulated debate about the nature of reality. In his seminal work, John Bell proved that no theory of nature that obeys locality and realism can reproduce all the predictions of quantum theory. Bell showed that in any local realist theory the correlations between distant measurements satisfy an inequality and, moreover, that this inequality can be violated according to quantum theory. This provided a recipe for experimental tests of the fundamental principles underlying the laws of nature. In the past decades, numerous ingenious Bell inequality tests have been reported. However, because of experimental limitations, all experiments to date required additional assumptions to obtain a contradiction with local realism, resulting in loopholes. Here we report on a Bell experiment that is free of any such additional assumption and thus directly tests the principles underlying Bell's inequality. We employ an event-ready scheme that enables the generation of high-fidelity entanglement between distant electron spins. Efficient spin readout avoids the fair sampling assumption (detection loophole), while the use of fast random basis selection and readout combined with a spatial separation of 1.3 km ensure the required locality conditions. We perform 245 trials testing the CHSH-Bell inequality S2S \leq 2 and find S=2.42±0.20S = 2.42 \pm 0.20. A null hypothesis test yields a probability of p=0.039p = 0.039 that a local-realist model for space-like separated sites produces data with a violation at least as large as observed, even when allowing for memory in the devices. This result rules out large classes of local realist theories, and paves the way for implementing device-independent quantum-secure communication and randomness certification.Comment: Raw data will be made available after publicatio

    Searching for Tissue-Specific Expression Pattern-Linked Nucleotides of UGT1A Isoforms

    Get PDF
    UDP-glucuronosyltransferases 1A isoforms belong to a superfamily of microsomal enzymes responsible for glucuronidation of numerous endogenous and exogenous compounds. The nine functional UGT1A isoforms are encoded by a single UGT1A gene locus with multiple first exons. The expression of the UGT1A transcripts was measured by quantitative RT-PCR in 23 normal human tissues. The tissue-specific expression patterns were observed in 13 tissues. To understand the regulation mechanism that is responsible for the tissue-specific expression patterns, we scanned the DNA sequence alignments of the putative promoter regions, exon 1 sequences and intron 1 sequences for those expression-pattern-linked nucleotides. Using one of the expression-pattern-linked nucleotides for livers as an example, we showed that a database comprised of these expression-pattern-linked nucleotides could be used to generate focused hypotheses on the problem of tissue-specific expression, which is critical for tissue-specific pharmacodynamics of anticancer drugs

    Motor-Cortical Interaction in Gilles de la Tourette Syndrome

    Get PDF
    BACKGROUND: In Gilles de la Tourette syndrome (GTS) increased activation of the primary motor cortex (M1) before and during movement execution followed by increased inhibition after movement termination was reported. The present study aimed at investigating, whether this activation pattern is due to altered functional interaction between motor cortical areas. METHODOLOGY/PRINCIPAL FINDINGS: 10 GTS-patients and 10 control subjects performed a self-paced finger movement task while neuromagnetic brain activity was recorded using Magnetoencephalography (MEG). Cerebro-cerebral coherence as a measure of functional interaction was calculated. During movement preparation and execution coherence between contralateral M1 and supplementary motor area (SMA) was significantly increased at beta-frequency in GTS-patients. After movement termination no significant differences between groups were evident. CONCLUSIONS/SIGNIFICANCE: The present data suggest that increased M1 activation in GTS-patients might be due to increased functional interaction between SMA and M1 most likely reflecting a pathophysiological marker of GTS. The data extend previous findings of motor-cortical alterations in GTS by showing that local activation changes are associated with alterations of functional networks between premotor and primary motor areas. Interestingly enough, alterations were evident during preparation and execution of voluntary movements, which implies a general theme of increased motor-cortical interaction in GTS

    Anti-Diarrheal Mechanism of the Traditional Remedy Uzara via Reduction of Active Chloride Secretion

    Get PDF
    BACKGROUND AND PURPOSE: The root extract of the African Uzara plant is used in traditional medicine as anti-diarrheal drug. It is known to act via inhibition of intestinal motility, but malabsorptive or antisecretory mechanisms are unknown yet. EXPERIMENTAL APPROACH: HT-29/B6 cells and human colonic biopsies were studied in Ussing experiments in vitro. Uzara was tested on basal as well as on forskolin- or cholera toxin-induced Cl(-) secretion by measuring short-circuit current (I(SC)) and tracer fluxes of (22)Na(+) and (36)Cl(-). Para- and transcellular resistances were determined by two-path impedance spectroscopy. Enzymatic activity of the Na(+)/K(+)-ATPase and intracellular cAMP levels (ELISA) were measured. KEY RESULTS: In HT-29/B6 cells, Uzara inhibited forskolin- as well as cholera toxin-induced I(SC) within 60 minutes indicating reduced active chloride secretion. Similar results were obtained in human colonic biopsies pre-stimulated with forskolin. In HT-29/B6, the effect of Uzara on the forskolin-induced I(SC) was time- and dose-dependent. Analyses of the cellular mechanisms of this Uzara effect revealed inhibition of the Na(+)/K(+)-ATPase, a decrease in forskolin-induced cAMP production and a decrease in paracellular resistance. Tracer flux experiments indicate that the dominant effect is the inhibition of the Na(+)/K(+)-ATPase. CONCLUSION AND IMPLICATIONS: Uzara exerts anti-diarrheal effects via inhibition of active chloride secretion. This inhibition is mainly due to an inhibition of the Na(+)/K(+)-ATPase and to a lesser extent to a decrease in intracellular cAMP responses and paracellular resistance. The results imply that Uzara is suitable for treating acute secretory diarrhea

    A randomized clinical trial of a peri-operative behavioral intervention to improve physical activity adherence and functional outcomes following total knee replacement

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Total knee replacement (TKR) is a common and effective surgical procedure to relieve advanced knee arthritis that persists despite comprehensive medical treatment. Although TKR has excellent technical outcomes, significant variation in patient-reported functional improvement post-TKR exists. Evidence suggests that consistent post-TKR exercise and physical activity is associated with functional gain, and that this relationship is influenced by emotional health. The increasing use of TKR in the aging US population makes it critical to find strategies that maximize functional outcomes.</p> <p>Methods/Design</p> <p>This randomized clinical trial (RCT) will test the efficacy of a theory-based telephone-delivered Patient Self-Management Support intervention that seeks to enhance adherence to independent exercise and activity among post- TKR patients. The intervention consists of 12 sessions, which begin prior to surgery and continue for approximately 9 weeks post-TKR. The intervention condition will be compared to a usual care control condition using a randomized design and a probabilistic sample of men and women. Assessments are conducted at baseline, eight weeks, and six- and twelve- months. The project is being conducted at a large healthcare system in Massachusetts. The study was designed to provide greater than 80% power for detecting a difference of 4 points in physical function (SF36/Physical Component Score) between conditions (standard deviation of 10) at six months with secondary outcomes collected at one year, assuming a loss to follow up rate of no more than 15%.</p> <p>Discussion</p> <p>As TKR use expands, it is important to develop methods to identify patients at risk for sub-optimal functional outcome and to effectively intervene with the goal of optimizing functional outcomes. If shown efficacious, this peri-TKR intervention has the potential to change the paradigm for successful post-TKR care. We hypothesize that Patient Self-Management Support to enhance adherence to independent activity and exercise will enhance uniform, optimal improvement in post-TKR function and patient autonomy, the ultimate goals of TKR.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00566826">NCT00566826</a></p
    corecore