52 research outputs found

    A Cohort Study of Serum Bilirubin Levels and Incident Non-Alcoholic Fatty Liver Disease in Middle Aged Korean Workers

    Get PDF
    BACKGROUND: Serum bilirubin may have potent antioxidant and cytoprotective effects. Serum bilirubin levels are inversely associated with several cardiovascular and metabolic endpoints, but their association with nonalcoholic fatty liver disease (NAFLD) has not been investigated except for a single cross-sectional study in a pediatric population. We assessed the prospective association between serum bilirubin concentrations (total, direct, and indirect) and the risk for NAFLD. METHODS AND FINDINGS: We performed a cohort study in 5,900 Korean men, 30 to 59 years of age, with no evidence of liver disease and no major risk factors for liver disease at baseline. Study participants were followed in annual or biennial health examinations between 2002 and 2009. The presence of fatty liver was determined at each visit by ultrasonography. We observed 1,938 incident cases of NAFLD during 28,101.8 person-years of follow-up. Increasing levels of serum direct bilirubin were progressively associated with a decreasing incidence of NAFLD. In age-adjusted models, the hazard ratio for NAFLD comparing the highest to the lowest quartile of serum direct bilirubin levels was 0.61 (95% CI 0.54-0.68). The association persisted after adjusting for multiple metabolic parameters (hazard ratio comparing the highest to the lowest quartile 0.86, 95% CI 0.76-0.98; P trend = 0.039). Neither serum total nor indirect bilirubin levels were significantly associated with the incidence of NAFLD. CONCLUSIONS: In this large prospective study, higher serum direct bilirubin levels were significantly associated with a lower risk of developing NAFLD, even adjusting for a variety of metabolic parameters. Further research is needed to elucidate the mechanisms underlying this association and to establish the role of serum direct bilirubin as a marker for NAFLD risk

    Myeloid Heme Oxygenase-1 Haploinsufficiency Reduces High Fat Diet-Induced Insulin Resistance by Affecting Adipose Macrophage Infiltration in Mice

    Get PDF
    Increased adipose tissue macrophages contribute to obesity-induced metabolic syndrome. Heme oxygenase-1 (HO-1) is a stress-inducible enzyme with potent anti-inflammatory and proangiogenic activities in macrophages. However, the role of macrophage HO-1 on obesity-induced adipose inflammation and metabolic syndrome remains unclear. Here we show that high-fat diet (HFD) feeding in C57BL/6J mice induced HO-1 expression in the visceral adipose tissue, particularly the stromal vascular fraction. When the irradiated C57BL/6J mice reconstituted with wild-type or HO-1+/− bone marrow were fed with HFD for over 24 weeks, the HO-1+/− chimeras were protected from HFD-induced insulin resistance and this was associated with reduced adipose macrophage infiltration and angiogenesis, suggesting that HO-1 affects myeloid cell migration toward adipose tissue during obesity. In vivo and in vitro migration assays revealed that HO-1+/− macrophages exhibited an impaired migration response. Chemoattractant-induced phosphorylation of p38 and focal adhesion kinase (FAK) declined faster in HO-1+/− macrophages. Further experiments demonstrated that carbon monoxide and bilirubin, the byproducts derived from heme degradation by HO-1, enhanced macrophage migration by increasing phosphorylation of p38 and FAK, respectively. These data disclose a novel role of hematopoietic cell HO-1 in promoting adipose macrophage infiltration and the development of insulin resistance during obesity
    corecore