19 research outputs found

    Roles of histone acetylation and chromatin remodeling factor in a meiotic recombination hotspot

    No full text
    Histone acetyltransferases (HATs) and ATP-dependent chromatin remodeling factors (ADCRs) are involved in selective gene regulation via modulation of local chromatin configuration. Activation of the recombination hotspot ade6-M26 of Schizosaccharomyces pombe is mediated by a cAMP responsive element (CRE) -like sequence, M26, and a heterodimeric ATF/CREB transcription factor, AtfPcr1. Chromatin remodeling occurs meiotically around M26. We examined the roles of HATs and ADCRs in chromatin remodeling around M26. Histones H3 and H4 around M26 were hyperacetylated in an M26- and Atf1-dependent manner early in meiosis. SpGcn5, the S. pombe homolog of Gcn5p, was required for the majority of histone H3 acetylation around M26 in vivo. Deletion of gcn5 + caused a significant delay in chromatin remodeling but only partial reduction of M26 meiotic recombination frequency. The snf22 + (a Swi2/Snf2-ADCR homologue) deletion and snf22 +gcn5 + double deletion abolished chromatin remodeling and significant reduction of meiotic recombination around M26. These results suggest that HATs and ADCRs cooperatively alter local chromatin structure, as in selective transcription activation, to activate meiotic recombination at M26 in a site-specific manner

    Artemis splice defects cause atypical SCID and can be restored in vitro by an antisense oligonucleotide

    No full text
    Item does not contain fulltextArtemis deficiency is known to result in classical T-B- severe combined immunodeficiency (SCID) in case of Artemis null mutations, or Omenn's syndrome in case of hypomorphic mutations in the Artemis gene. We describe two unrelated patients with a relatively mild clinical T-B- SCID phenotype, caused by different homozygous Artemis splice-site mutations. The splice-site mutations concern either dysfunction of a 5' splice-site or an intronic point mutation creating a novel 3' splice-site, resulting in mutated Artemis protein with residual activity or low levels of wild type (WT) Artemis transcripts. During the first 10 years of life, the patients suffered from recurrent infections necessitating antibiotic prophylaxis and intravenous immunoglobulins. Both mutations resulted in increased ionizing radiation sensitivity and insufficient variable, diversity and joining (V(D)J) recombination, causing B-lymphopenia and exhaustion of the naive T-cell compartment. The patient with the novel 3' splice-site had progressive granulomatous skin lesions, which disappeared after stem cell transplantation (SCT). We showed that an alternative approach to SCT can, in principle, be used in this case; an antisense oligonucleotide (AON) covering the intronic mutation restored WT Artemis transcript levels and non-homologous end-joining pathway activity in the patient fibroblasts
    corecore