87 research outputs found

    Hepatocellular adenoma: what is new in 2008

    Get PDF
    Patients (85%) with hepatocellular adenoma (HCA) are women taking oral contraceptives. They can be divided into four subgroups according to their genotype/phenotype features. (1) Hepatocyte nuclear factor 1α (HNF1α) biallelic somatic mutations are observed in 35% of the HCA cases. It occurs in almost all cases in women. HNF1α-mutated HCA are most of the time, highly steatotic, with a lack of expression of liver fatty acid binding protein (LFABP) in immunohistochemistry analyses. Adenomatosis is frequently detected in this context. An HNF1α germline mutation is observed in less than 5% of HCA cases and can be associated with MODY 3 diabetes. (2) An activating β-catenin mutation was found in 10% of HCA. These β-catenin activated HCAs are observed in men and women, and specific risk factors, such as male hormone administration or glycogenosis, are associated with their development. Immunohistochemistry studies show that these HCAs overexpress β-catenin (nuclear and cytoplasmic) and glutamine synthetase. This group of tumours has a higher risk of malignant transformation into hepatocellular carcinoma. (3) Inflammatory HCAs are observed in 40% of the cases, and they are most frequent in women but are also found in men. Lesions are characterised by inflammatory infiltrates, dystrophic arteries, sinusoidal dilatation and ductular reaction. They express serum amyloid A and C-reactive protein. In this group, GGT is frequently elevated, with a biological inflammatory syndrome present. Also, there are more overweight patients in this group. An additional 10% of inflammatory HCAs express β-catenin, and are also at risk of malignant transformation. (4) Currently, less than 10% of HCAs are unclassified. It is hoped that in the near future it will be possible with clinical, biological and imaging data to predict in which of the 2 major groups (HNF1α-mutated HCA and inflammatory HCA) the patient belongs and to propose better guidelines in terms of surveillance and treatment

    Comparison of DNA histograms by standard flow cytometry and image cytometry on sections in Barrett's adenocarcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to compare DNA histograms obtained by standard flow cytometry (FC) and high fidelity image cytometry on sections (ICS) in normal gastrointestinal mucosa and Barrett's adenocarcinoma (BAC).</p> <p>Methods</p> <p>Archival formalin-fixed paraffin-embedded tissue blocks of 10 normal controls from 10 subjects and 42 BAC tissues from 17 patients were examined. DNA FC was performed using standard techniques and ICS was carried out by Automated Cellular Imaging System (ACIS). DNA ploidy histograms were classified into diploid with peak DNA index (DI) at 0.9–1.1, and aneuploid with peak DI > 1.1. DI values of aneuploid peaks were determined. Additionally, for DNA ICS, heterogeneity index (HI) representing DNA content heterogeneity, and histograms containing cells with DI > G2 were also identified.</p> <p>Results</p> <p>All control samples were diploid by both FC and ICS analyses. In BAC, FC showed diploid peaks in 29%, diploid peaks with additional aneuploid or tetraploid peaks in 57%, and 14% of the samples, respectively. In contrast, ICS showed aneuploid peaks in all the cases with peak DI > 1.25; 37 cases had peak DI between 1.25 and 2.25; and 5 cases had peak DI > 2.25. HI values (mean ± SD) were 11.3 ± 1.1 in controls and 32.4 ± 8.5 in BAC (p < 0.05). Controls had no G2 exceeding cells. However, 19/37 (51%) of the cases with primary peak DI < 2.25 had cells exceeding 9N.</p> <p>Conclusion</p> <p>ICS detects DNA aneuploidy in all BAC samples while FC missed the diagnosis of aneuploidy in 29%. In addition, ICS provides more information on HI and G2 exceeding rates.</p

    Frequent Occurrence of Mitochondrial DNA Mutations in Barrett’s Metaplasia without the Presence of Dysplasia

    Get PDF
    BACKGROUND: Barrett's esophagus (BE) is one of the most common premalignant lesions and can progress to esophageal adenocarcinoma (EA). The numerous molecular events may play a role in the neoplastic transformation of Barrett's mucosa such as the change of DNA ploidy, p53 mutation and alteration of adhesion molecules. However, the molecular mechanism of the progression of BE to EA remains unclear and most studies of mitochondrial DNA (mtDNA) mutations in BE have performed on BE with the presence of dysplasia. METHODS/FINDINGS: Thus, the current study is to investigate new molecular events (Barrett's esophageal tissue-specific-mtDNA alterations/instabilities) in mitochondrial genome and causative factors for their alterations using the corresponding adjacent normal mucosal tissue (NT) and tissue (BT) from 34 patients having Barrett's metaplasia without the presence of dysplasia. Eighteen patients (53%) exhibited mtDNA mutations which were not found in adjacent NT. mtDNA copy number was about 3 times higher in BT than in adjacent NT. The activity of the mitochondrial respiratory chain enzyme complexes in tissues from Barrett's metaplasia without the presence of dysplasia was impaired. Reactive oxygen species (ROS) level in BT was significantly higher than those in corresponding samples. CONCLUSION/SIGNIFICANCE: High ROS level in BT may contribute to the development of mtDNA mutations, which may play a crucial role in disease progression and tumorigenesis in BE

    Extensive telomere erosion is consistent with localised clonal expansions in Barrett’s metaplasia

    Get PDF
    Barrett’s oesophagus is a premalignant metaplastic condition that predisposes patients to the development of oesophageal adenocarcinoma. However, only a minor fraction of Barrett’s oesophagus patients progress to adenocarcinoma and it is thus essential to determine bio-molecular markers that can predict the progression of this condition. Telomere dysfunction is considered to drive clonal evolution in several tumour types and telomere length analysis provides clinically relevant prognostic and predictive information. The aim of this work was to use high-resolution telomere analysis to examine telomere dynamics in Barrett’s oesophagus. Telomere length analysis of XpYp, 17p, 11q and 9p, chromosome arms that contain key cancer related genes that are known to be subjected to copy number changes in Barrett’s metaplasia, revealed similar profiles at each chromosome end, indicating that no one specific telomere is likely to suffer preferential telomere erosion. Analysis of patient matched tissues (233 samples from 32 patients) sampled from normal squamous oesophagus, Z-line, and 2 cm intervals within Barrett’s metaplasia, plus oesophago-gastric junction, gastric body and antrum, revealed extensive telomere erosion in Barrett’s metaplasia to within the length ranges at which telomere fusion is detected in other tumour types. Telomere erosion was not uniform, with distinct zones displaying more extensive erosion and more homogenous telomere length profiles. These data are consistent with an extensive proliferative history of cells within Barrett’s metaplasia and are indicative of localised clonal growth. The extent of telomere erosion highlights the potential of telomere dysfunction to drive genome instability and clonal evolution in Barrett’s metaplasia

    HNF1α inhibition triggers epithelial-mesenchymal transition in human liver cancer cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatocyte Nuclear Factor 1α (HNF1α) is an atypical homeodomain-containing transcription factor that transactivates liver-specific genes including albumin, α-1-antitrypsin and α- and β-fibrinogen. Biallelic inactivating mutations of <it>HNF1A </it>have been frequently identified in hepatocellular adenomas (HCA), rare benign liver tumors usually developed in women under oral contraceptives, and in rare cases of hepatocellular carcinomas developed in non-cirrhotic liver. HNF1α-mutated HCA (H-HCA) are characterized by a marked steatosis and show activation of glycolysis, lipogenesis, translational machinery and mTOR pathway. We studied the consequences of HNF1α silencing in hepatic cell lines, HepG2 and Hep3B and we reproduced most of the deregulations identified in H-HCA.</p> <p>Methods</p> <p>We transfected hepatoma cell lines HepG2 and Hep3B with siRNA targeting HNF1α and obtained a strong inhibition of HNF1α expression. We then looked at the phenotypic changes by microscopy and studied changes in gene expression using qRT-PCR and Western Blot.</p> <p>Results</p> <p>Hepatocytes transfected with HNF1α siRNA underwent severe phenotypic changes with loss of cell-cell contacts and development of migration structures. In HNF1α-inhibited cells, hepatocyte and epithelial markers were diminished and mesenchymal markers were over-expressed. This epithelial-mesenchymal transition (EMT) was related to the up regulation of several EMT transcription factors, in particular <it>SNAIL </it>and <it>SLUG</it>. We also found an overexpression of TGFβ1, an EMT initiator, in both cells transfected with HNF1α siRNA and H-HCA. Moreover, TGFβ1 expression is strongly correlated to HNF1α expression in cell models, suggesting regulation of TGFβ1 expression by HNF1α.</p> <p>Conclusion</p> <p>Our results suggest that HNF1α is not only important for hepatocyte differentiation, but has also a role in the maintenance of epithelial phenotype in hepatocytes.</p
    corecore