7 research outputs found

    Surface free energy analysis of electrospun fibers based on Rayleigh-Plateau/Weber instabilities

    Get PDF
    Electrospinning is an increasingly common technique used to produce fibers with a range of diameters. These electrospun fibers are used extensively in applications that exploit the material’s high surface area to volume ratio, thus requiring detailed knowledge of the surface properties of the fibers. The surface free energy of individual free standing electrospun styrene-butadiene rubber (SBR) fibers was determined here from the time-dependent break-up of long fibers driven initially by Rayleigh-Plateau/Weber instabilities. Individual free standing electrospun rubber fibers were observed to change from a cylindrical fibrous geometry to semi-spherical droplets during a time period of several days when above the glass transition temperature of the polymer. A wave-like transition from fiber to droplet was attributed to a surface tension driven break-up process occurring over a time strongly influenced by the rubber's viscosity. The surface free energy for an electrospun rubber fiber was found using a Weber approach for the free standing fibers and Diez et al theory for dynamic fluid instability of fluid ridges. Both methods lead to similar values of fiber surface free energy and were confirmed from bulk measurements exploiting Owens-Wend theory. The approach presented here is powerful as the surface free energy, indicative of the physical and chemical behavior of the fiber surface, can be determined for any fiber diameter provided the geometric break-up of the fiber is observed

    Membrane protein structure, function, and dynamics: a perspective from experiments and theory

    No full text
    Membrane proteins mediate processes that are fundamental for the flourishing of biological cells. Membrane-embedded transporters move ions and larger solutes across membranes; receptors mediate communication between the cell and its environment and membrane-embedded enzymes catalyze chemical reactions. Understanding these mechanisms of action requires knowledge of how the proteins couple to their fluid, hydrated lipid membrane environment. We present here current studies in computational and experimental membrane protein biophysics, and show how they address outstanding challenges in understanding the complex environmental effects on the structure, function, and dynamics of membrane proteins.JTD, IA, and MR used the computational resources of the Modeling Facility of the Department of Chemistry, University of California Irvine funded by NSF Grant CHE-0840513 for this work. A-NB was supported in part by the Marie Curie International Reintegration Award IRG-26920.TWA was supported by ARC DP120103548, NSF MCB1052477, DE Shaw Anton (PSCA00061P; NRBSC, through NIH RC2GM093307), VLSCI (VR0200), and NCI (dd7). BA and SV acknowledge the support by ERC advanced Grant No. 268888. ZC and PG would like to acknowledge Reference Framework (NSRF) 2011–2013, National Action ‘‘Cooperation,’’ under grant entitled ‘‘Magnetic Nanoparticles for targeted MRI therapy (NANOTHER),’’ with code ‘‘11RYM-1-1799.’’ The program is cofunded by the European Regional Development Fund and national resources. Part of the calculations presented herein were performed using resources of the LinkSCEEM-2 project, funded by the EC under FP7 through Capacities Research Infrastructure, INFRA-2010-1.2.3 Virtual Research Communities, Combination of Collaborative Project and Coordination and Support Actions (CPCSA) under Grant agreement no. RI-261600. GB was supported in part by NSF grant MCB1330728 from the National Science Foundation and Grant PO1GM55876-14A1 from the National Institutes of Health. LD received funding from EU FP7 (PIOF-GA-2012-329534). LD, and MLK used the computational resources of Temple University, supported by the National Science Foundation through major research instrumentation grant number CNS-09-58854. JS acknowledges support from the Instituto de Salud Carlos III FEDER (CP12/03139
    corecore