482 research outputs found

    Complexity without chaos: Plasticity within random recurrent networks generates robust timing and motor control

    Get PDF
    It is widely accepted that the complex dynamics characteristic of recurrent neural circuits contributes in a fundamental manner to brain function. Progress has been slow in understanding and exploiting the computational power of recurrent dynamics for two main reasons: nonlinear recurrent networks often exhibit chaotic behavior and most known learning rules do not work in robust fashion in recurrent networks. Here we address both these problems by demonstrating how random recurrent networks (RRN) that initially exhibit chaotic dynamics can be tuned through a supervised learning rule to generate locally stable neural patterns of activity that are both complex and robust to noise. The outcome is a novel neural network regime that exhibits both transiently stable and chaotic trajectories. We further show that the recurrent learning rule dramatically increases the ability of RRNs to generate complex spatiotemporal motor patterns, and accounts for recent experimental data showing a decrease in neural variability in response to stimulus onset

    The effects of Gilles de la Tourette syndrome and other chronic tic disorders on quality of life across the lifespan:a systematic review

    Get PDF
    Gilles de la Tourette syndrome (GTS) and other chronic tic disorders are neurodevelopmental conditions characterized by the presence of tics and associated behavioral problems. Whilst converging evidence indicates that these conditions can affect patients' quality of life (QoL), the extent of this impairment across the lifespan is not well understood. We conducted a systematic literature review of published QoL studies in GTS and other chronic tic disorders to comprehensively assess the effects of these conditions on QoL in different age groups. We found that QoL can be perceived differently by child and adult patients, especially with regard to the reciprocal contributions of tics and behavioral problems to the different domains of QoL. Specifically, QoL profiles in children often reflect the impact of co-morbid attention-deficit and hyperactivity symptoms, which tend to improve with age, whereas adults' perception of QoL seems to be more strongly affected by the presence of depression and anxiety. Management strategies should take into account differences in age-related QoL needs between children and adults with GTS or other chronic tic disorders

    A fresh look at the evolution and diversification of photochemical reaction centers

    Get PDF
    In this review, I reexamine the origin and diversification of photochemical reaction centers based on the known phylogenetic relations of the core subunits, and with the aid of sequence and structural alignments. I show, for example, that the protein folds at the C-terminus of the D1 and D2 subunits of Photosystem II, which are essential for the coordination of the water-oxidizing complex, were already in place in the most ancestral Type II reaction center subunit. I then evaluate the evolution of reaction centers in the context of the rise and expansion of the different groups of bacteria based on recent large-scale phylogenetic analyses. I find that the Heliobacteriaceae family of Firmicutes appears to be the earliest branching of the known groups of phototrophic bacteria; however, the origin of photochemical reaction centers and chlorophyll synthesis cannot be placed in this group. Moreover, it becomes evident that the Acidobacteria and the Proteobacteria shared a more recent common phototrophic ancestor, and this is also likely for the Chloroflexi and the Cyanobacteria. Finally, I argue that the discrepancies among the phylogenies of the reaction center proteins, chlorophyll synthesis enzymes, and the species tree of bacteria are best explained if both types of photochemical reaction centers evolved before the diversification of the known phyla of phototrophic bacteria. The primordial phototrophic ancestor must have had both Type I and Type II reaction centers

    Impact of Normothermic Preservation with Extracellular Type Solution Containing Trehalose on Rat Kidney Grafting from a Cardiac Death Donor

    Get PDF
    BACKGROUND: The aim of this study was to investigate factors that may improve the condition of a marginal kidney preserved with a normothermic solution following cardiac death (CD) in a model of rat kidney transplantation (RTx). METHODS: Post-euthanasia, Lewis (LEW) donor rats were left for 1 h in a 23°C room. These critical kidney grafts were preserved in University of Wisconsin (UW), lactate Ringer's (LR), or extracellular-trehalose-Kyoto (ETK) solution, followed by intracellular-trehalose-Kyoto (ITK) solution at 4, 23, or 37°C for another 1 h, and finally transplanted into bilaterally nephrectomized LEW recipient rats (n = 4-6). Grafts of rats surviving to day 14 after RTx were evaluated by histopathological examination. The energy activity of these marginal rat kidneys was measured by high-performance liquid chromatography (HPLC; n = 4 per group) and fluorescence intensity assay (n = 6 per group) after preservation with UW or ETK solutions at each temperature. Finally, the transplanted kidney was assessed by an in vivo luciferase imaging system (n = 2). RESULTS: Using the 1-h normothermic preservation of post-CD kidneys, five out of six recipients in the ETK group survived until 14 days, in contrast to zero out of six in the UW group (p<0.01). Preservation with ITK rather than ETK at 23°C tended to have an inferior effect on recipient survival (p = 0.12). Energy activities of the fresh donor kidneys decreased in a temperature-dependent manner, while those of post-CD kidneys remained at the lower level. ETK was superior to UW in protecting against edema of the post-CD kidneys at the higher temperature. Luminescence intensity of successful grafts recovered within 1 h, while the intensity of grafts of deceased recipients did not change at 1 h post-reperfusion. CONCLUSIONS: Normothermic storage with extracellular-type solution containing trehalose might prevent reperfusion injury due to temperature-dependent tissue edema

    Maturation-Induced Cloaking of Neutralization Epitopes on HIV-1 Particles

    Get PDF
    To become infectious, HIV-1 particles undergo a maturation process involving proteolytic cleavage of the Gag and Gag-Pol polyproteins. Immature particles contain a highly stable spherical Gag lattice and are impaired for fusion with target cells. The fusion impairment is relieved by truncation of the gp41 cytoplasmic tail (CT), indicating that an interaction between the immature viral core and gp41 within the particle represses HIV-1 fusion by an unknown mechanism. We hypothesized that the conformation of Env on the viral surface is regulated allosterically by interactions with the HIV-1 core during particle maturation. To test this, we quantified the binding of a panel of monoclonal antibodies to mature and immature HIV-1 particles by immunofluorescence imaging. Surprisingly, immature particles exhibited markedly enhanced binding of several gp41-specific antibodies, including two that recognize the membrane proximal external region (MPER) and neutralize diverse HIV-1 strains. Several of the differences in epitope exposure on mature and immature particles were abolished by truncation of the gp41 CT, thus linking the immature HIV-1 fusion defect with altered Env conformation. Our results suggest that perturbation of fusion-dependent Env conformational changes contributes to the impaired fusion of immature particles. Masking of neutralization-sensitive epitopes during particle maturation may contribute to HIV-1 immune evasion and has practical implications for vaccine strategies targeting the gp41 MPER

    Differential Requirement for c-Jun N-terminal Kinase 1 in Lung Inflammation and Host Defense

    Get PDF
    The c-Jun N-terminal kinase (JNK) - 1 pathway has been implicated in the cellular response to stress in many tissues and models. JNK1 is known to play a role in a variety of signaling cascades, including those involved in lung disease pathogenesis. Recently, a role for JNK1 signaling in immune cell function has emerged. The goal of the present study was to determine the role of JNK1 in host defense against both bacterial and viral pneumonia, as well as the impact of JNK1 signaling on IL-17 mediated immunity. Wild type (WT) and JNK1 −/− mice were challenged with Escherichia coli, Staphylococcus aureus, or Influenza A. In addition, WT and JNK1 −/− mice and epithelial cells were stimulated with IL-17A. The impact of JNK1 deletion on pathogen clearance, inflammation, and histopathology was assessed. JNK1 was required for clearance of E. coli, inflammatory cell recruitment, and cytokine production. Interestingly, JNK1 deletion had only a small impact on the host response to S. aureus. JNK1 −/− mice had decreased Influenza A burden in viral pneumonia, yet displayed worsened morbidity. Finally, JNK1 was required for IL-17A mediated induction of inflammatory cytokines and antimicrobial peptides both in epithelial cells and the lung. These data identify JNK1 as an important signaling molecule in host defense and demonstrate a pathogen specific role in disease. Manipulation of the JNK1 pathway may represent a novel therapeutic target in pneumonia

    Defining neurotrauma in administrative data using the International Classification of Diseases Tenth Revision

    Get PDF
    Abstract Background It is essential to use a definition that is precise and accurate for the surveillance of traumatic brain injuries (TBI) and spinal cord injuries (SCI). This paper reviews the International Classification of Diseases 10th revision (ICD-10) definitions used internationally to inform the definition for neurotrauma surveillance using administrative data in Ontario, Canada. Methods PubMed, Web of Science, Medline and the grey literature were searched for keywords "spinal cord injuries" or "brain injuries" and "international classification of diseases". All papers and reports that used an ICD-10 definition were included. To determine the ICD-10 codes for inclusion consensus across papers and additional evidence were sought to look at the correlation between the condition and brain or spinal injuries. Results Twenty-four articles and reports were identified; 15 unique definitions for TBI and 7 for SCI were found. The definitions recommended for use in Ontario by this paper are F07.2, S02.0, S02.1, S02.3, S02.7, S02.8, S02.9, S06, S07.1, T90.2, and T90.5 for traumatic brain injuries and S14.0, S14.1, S24.0, S24.1, S34.1, S34.0, S34.3, T06.0, T06.1 and T91.3 for spinal cord injuries. Conclusions Internationally, inconsistent definitions are used to define brain and spinal cord injuries. An abstraction study of data would be an asset in understanding the effects of inclusion and exclusion of codes in the definition. This paper offers a definition of neurotrauma for surveillance in Ontario, but the definition could be applied to other countries that have mandated administrative data collection

    Potential therapeutic implications of new insights into respiratory syncytial virus disease

    Get PDF
    Viral bronchiolitis is the most common cause of hospitalization in infants under 6 months of age, and 70% of all cases of bronchiolitis are caused by respiratory syncytial virus (RSV). Early RSV infection is associated with respiratory problems such as asthma and wheezing later in life. RSV infection is usually spread by contaminated secretions and infects the upper then lower respiratory tracts. Infected cells release proinflammatory cytokines and chemokines, including IL-1, tumor necrosis factor-α, IL-6, and IL-8. These activate other cells and recruit inflammatory cells, including macrophages, neutrophils, eosinophils, and T lymphocytes, into the airway wall and surrounding tissues. The pattern of cytokine production by T lymphocytes can be biased toward 'T-helper-1' or 'T-helper-2' cytokines, depending on the local immunologic environment, infection history, and host genetics. T-helper-1 responses are generally efficient in antiviral defense, but young infants have an inherent bias toward T-helper-2 responses. The ideal intervention for RSV infection would be preventive, but the options are currently limited. Vaccines based on protein subunits, live attenuated strains of RSV, DNA vaccines, and synthetic peptides are being developed; passive antibody therapy is at present impractical in otherwise healthy children. Effective vaccines for use in neonates continue to be elusive but simply delaying infection beyond the first 6 months of life might reduce the delayed morbidity associated with infantile disease
    corecore