394 research outputs found
A very brief introduction to quantum computing and quantum information theory for mathematicians
This is a very brief introduction to quantum computing and quantum
information theory, primarily aimed at geometers. Beyond basic definitions and
examples, I emphasize aspects of interest to geometers, especially connections
with asymptotic representation theory. Proofs of most statements can be found
in standard references
Why the Tsirelson bound?
Wheeler's question 'why the quantum' has two aspects: why is the world
quantum and not classical, and why is it quantum rather than superquantum,
i.e., why the Tsirelson bound for quantum correlations? I discuss a remarkable
answer to this question proposed by Pawlowski et al (2009), who provide an
information-theoretic derivation of the Tsirelson bound from a principle they
call 'information causality.'Comment: 17 page
An experimental test of non-local realism
Most working scientists hold fast to the concept of 'realism' - a viewpoint
according to which an external reality exists independent of observation. But
quantum physics has shattered some of our cornerstone beliefs. According to
Bell's theorem, any theory that is based on the joint assumption of realism and
locality (meaning that local events cannot be affected by actions in space-like
separated regions) is at variance with certain quantum predictions. Experiments
with entangled pairs of particles have amply confirmed these quantum
predictions, thus rendering local realistic theories untenable. Maintaining
realism as a fundamental concept would therefore necessitate the introduction
of 'spooky' actions that defy locality. Here we show by both theory and
experiment that a broad and rather reasonable class of such non-local realistic
theories is incompatible with experimentally observable quantum correlations.
In the experiment, we measure previously untested correlations between two
entangled photons, and show that these correlations violate an inequality
proposed by Leggett for non-local realistic theories. Our result suggests that
giving up the concept of locality is not sufficient to be consistent with
quantum experiments, unless certain intuitive features of realism are
abandoned.Comment: Minor corrections to the manuscript, the final inequality and all its
conclusions do not change; description of corrections (Corrigendum) added as
new Appendix III; Appendix II replaced by a shorter derivatio
Multi-Prover Commitments Against Non-Signaling Attacks
We reconsider the concept of multi-prover commitments, as introduced in the
late eighties in the seminal work by Ben-Or et al. As was recently shown by
Cr\'{e}peau et al., the security of known two-prover commitment schemes not
only relies on the explicit assumption that the provers cannot communicate, but
also depends on their information processing capabilities. For instance, there
exist schemes that are secure against classical provers but insecure if the
provers have quantum information processing capabilities, and there are schemes
that resist such quantum attacks but become insecure when considering general
so-called non-signaling provers, which are restricted solely by the requirement
that no communication takes place.
This poses the natural question whether there exists a two-prover commitment
scheme that is secure under the sole assumption that no communication takes
place; no such scheme is known.
In this work, we give strong evidence for a negative answer: we show that any
single-round two-prover commitment scheme can be broken by a non-signaling
attack. Our negative result is as bad as it can get: for any candidate scheme
that is (almost) perfectly hiding, there exists a strategy that allows the
dishonest provers to open a commitment to an arbitrary bit (almost) as
successfully as the honest provers can open an honestly prepared commitment,
i.e., with probability (almost) 1 in case of a perfectly sound scheme. In the
case of multi-round schemes, our impossibility result is restricted to
perfectly hiding schemes.
On the positive side, we show that the impossibility result can be
circumvented by considering three provers instead: there exists a three-prover
commitment scheme that is secure against arbitrary non-signaling attacks
How much contextuality?
The amount of contextuality is quantified in terms of the probability of the
necessary violations of noncontextual assignments to counterfactual elements of
physical reality.Comment: 5 pages, 3 figure
Decoherence of matter waves by thermal emission of radiation
Emergent quantum technologies have led to increasing interest in decoherence
- the processes that limit the appearance of quantum effects and turn them into
classical phenomena. One important cause of decoherence is the interaction of a
quantum system with its environment, which 'entangles' the two and distributes
the quantum coherence over so many degrees of freedom as to render it
unobservable. Decoherence theory has been complemented by experiments using
matter waves coupled to external photons or molecules, and by investigations
using coherent photon states, trapped ions and electron interferometers. Large
molecules are particularly suitable for the investigation of the
quantum-classical transition because they can store much energy in numerous
internal degrees of freedom; the internal energy can be converted into thermal
radiation and thus induce decoherence. Here we report matter wave
interferometer experiments in which C70 molecules lose their quantum behaviour
by thermal emission of radiation. We find good quantitative agreement between
our experimental observations and microscopic decoherence theory. Decoherence
by emission of thermal radiation is a general mechanism that should be relevant
to all macroscopic bodies.Comment: 5 pages, 4 figure
No extension of quantum theory can have improved predictive power
According to quantum theory, measurements generate random outcomes, in stark
contrast with classical mechanics. This raises the question of whether there
could exist an extension of the theory which removes this indeterminism, as
suspected by Einstein, Podolsky and Rosen (EPR). Although this has been shown
to be impossible, existing results do not imply that the current theory is
maximally informative. Here we ask the more general question of whether any
improved predictions can be achieved by any extension of quantum theory. Under
the assumption that measurements can be chosen freely, we answer this question
in the negative: no extension of quantum theory can give more information about
the outcomes of future measurements than quantum theory itself. Our result has
significance for the foundations of quantum mechanics, as well as applications
to tasks that exploit the inherent randomness in quantum theory, such as
quantum cryptography.Comment: 6 pages plus 7 of supplementary material, 3 figures. Title changed.
Added discussion on Bell's notion of locality. FAQ answered at
http://perimeterinstitute.ca/personal/rcolbeck/FAQ.htm
Extension of Information Geometry to Non-statistical Systems: Some Examples
Our goal is to extend information geometry to situations where statistical
modeling is not obvious. The setting is that of modeling experimental data.
Quite often the data are not of a statistical nature. Sometimes also the model
is not a statistical manifold. An example of the former is the description of
the Bose gas in the grand canonical ensemble. An example of the latter is the
modeling of quantum systems with density matrices. Conditional expectations in
the quantum context are reviewed. The border problem is discussed: through
conditioning the model point shifts to the border of the differentiable
manifold.Comment: 8 pages, to be published in the proceedings of GSI2015, Lecture Notes
in Computer Science, Springe
Quantum Storage of Photonic Entanglement in a Crystal
Entanglement is the fundamental characteristic of quantum physics. Large
experimental efforts are devoted to harness entanglement between various
physical systems. In particular, entanglement between light and material
systems is interesting due to their prospective roles as "flying" and
stationary qubits in future quantum information technologies, such as quantum
repeaters and quantum networks. Here we report the first demonstration of
entanglement between a photon at telecommunication wavelength and a single
collective atomic excitation stored in a crystal. One photon from an
energy-time entangled pair is mapped onto a crystal and then released into a
well-defined spatial mode after a predetermined storage time. The other photon
is at telecommunication wavelength and is sent directly through a 50 m fiber
link to an analyzer. Successful transfer of entanglement to the crystal and
back is proven by a violation of the Clauser-Horne-Shimony-Holt (CHSH)
inequality by almost three standard deviations (S=2.64+/-0.23). These results
represent an important step towards quantum communication technologies based on
solid-state devices. In particular, our resources pave the way for building
efficient multiplexed quantum repeaters for long-distance quantum networks.Comment: 5 pages, 3 figures + supplementary information; fixed typo in ref.
[36
Conclusive quantum steering with superconducting transition edge sensors
Quantum steering allows two parties to verify shared entanglement even if one
measurement device is untrusted. A conclusive demonstration of steering through
the violation of a steering inequality is of considerable fundamental interest
and opens up applications in quantum communication. To date all experimental
tests with single photon states have relied on post-selection, allowing
untrusted devices to cheat by hiding unfavourable events in losses. Here we
close this "detection loophole" by combining a highly efficient source of
entangled photon pairs with superconducting transition edge sensors. We achieve
an unprecedented ~62% conditional detection efficiency of entangled photons and
violate a steering inequality with the minimal number of measurement settings
by 48 standard deviations. Our results provide a clear path to practical
applications of steering and to a photonic loophole-free Bell test.Comment: Preprint of 7 pages, 3 figures; the definitive version is published
in Nature Communications, see below. Also, see related experimental work by
A. J. Bennet et al., arXiv:1111.0739 and B. Wittmann et al., arXiv:1111.076
- …
