685 research outputs found
Flame Treatment of Polypropylene: A Study by Electron and Ion Spectroscopies
The effects of flame treatment on the surface characteristics of four injection moulded, automotive grade, polypropylene samples, pigmented with carbon black, have been studied. The changes in wettability have been monitored by water contact angle and Dyne inks, whilst XPS has been used to establish the changes in oxygen surface concentration as a function of flame treatment. As expected carbon pigmented and carbon plus talc filled samples showed a significant increase in oxygen concentration and surface wettability with increasing flame treatment. For the glass filled sample this effect was not so pronounced. Inspection of the XPS valence band shows initial attack in the flame treatment process to be at the pendant methyl group of the poly(propylene) molecular architecture. XPS in conjunction with cluster ion bombardment shows the depth of surface treatment to range from ca. 7 nm at one pass of flame treatment to some 15 nm following seven passes. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) shows the segregation of characteristic additives during the injection moulding process which are subsequently greatly reduced during the flame treatment. As treatment level increases oxygen increases from mono-atomic to diatomic attachment. This work extends the understanding of the flame treatment of moulded polyolefines and establishes that the beneficial properties conferred are the result of the conjoint effect of the oxygenation of the bulk polymer along with the removal of surface segregated processing aids
Evaluation of the efficacy of Alpron disinfectant for dental unit water lines
AIMS: To assess the efficacy of a disinfectant, Alpron, for controlling microbial contamination within dental unit water lines. METHODS: The microbiological quality of water emerging from the triple syringe, high speed handpiece, cup filler and surgery hand wash basin from six dental units was assessed for microbiological total viable counts at 22 degrees C and 37 degrees C before and after treatment with Alpron solutions. RESULTS: The study found that the use of Alpron disinfectant solutions could reduce microbial counts in dental unit water lines to similar levels for drinking water. This effect was maintained in all units for up to six weeks following one course of treatment. In four out of six units the low microbial counts were maintained for 13 weeks. CONCLUSIONS: Disinfectants may have a short term role to play in controlling microbial contamination of dental unit water lines to drinking water quality. However, in the longer term attention must be paid to redesigning dental units to discourage the build up of microbial biofilms
P-odd and CP-odd Four-Quark Contributions to Neutron EDM
In a class of beyond-standard-model theories, CP-odd observables, such as the
neutron electric dipole moment, receive significant contributions from
flavor-neutral P-odd and CP-odd four-quark operators. However, considerable
uncertainties exist in the hadronic matrix elements of these operators strongly
affecting the experimental constraints on CP-violating parameters in the
theories. Here we study their hadronic matrix elements in combined chiral
perturbation theory and nucleon models. We first classify the operators in
chiral representations and present the leading-order QCD evolutions. We then
match the four-quark operators to the corresponding ones in chiral hadronic
theory, finding symmetry relations among the matrix elements. Although this
makes lattice QCD calculations feasible, we choose to estimate the
non-perturbative matching coefficients in simple quark models. We finally
compare the results for the neutron electric dipole moment and P-odd and CP-odd
pion-nucleon couplings with the previous studies using naive factorization and
QCD sum rules. Our study shall provide valuable insights on the present
hadronic physics uncertainties in these observables.Comment: 40 pages, 7 figures. This is the final version. A discussion of the
uncertainty of the calculation is adde
Age-Related Differences in Susceptibility to Carcinogenesis: A Quantitative Analysis of Empirical Animal Bioassay Data
In revising cancer risk assessment guidelines, the U.S. Environmental Protection Agency (EPA) analyzed animal cancer bioassay data over different periods of life. In this article, we report an improved analysis of these data (supplemented with some chemical carcinogenesis observations not included in the U.S. EPA’s original analysis) and animal bioassay studies of ionizing radiation. We use likelihood methods to avoid excluding cases where no tumors were observed in specific groups. We express dosage for animals of different weights on a metabolically consistent basis (concentration in air or food, or per unit body weight to the three-quarters power). Finally, we use a system of dummy variables to represent exposures during fetal, preweaning, and weaning–60-day postnatal periods, yielding separate estimates of relative sensitivity per day of dosing in these intervals. Central estimate results indicate a 5- to 60-fold increased carcinogenic sensitivity in the birth–weaning period per dose ÷ (body weight(0.75)-day) for mutagenic carcinogens and a somewhat smaller increase—centered about 5-fold—for radiation carcinogenesis per gray. Effects were greater in males than in females. We found a similar increased sensitivity in the fetal period for direct-acting nitrosoureas, but no such increased fetal sensitivity was detected for carcinogens requiring metabolic activation. For the birth–weaning period, we found an increased sensitivity for direct administration to the pups similar to that found for indirect exposure via lactation. Radiation experiments indicated that carcinogenic sensitivity is not constant through the “adult” period, but the dosage delivered in 12- to 21-month-old animals appears a few-fold less effective than the comparable dosage delivered in young adults (90–105 days of age)
Measuring the functional sequence complexity of proteins
<p>Abstract</p> <p>Background</p> <p>Abel and Trevors have delineated three aspects of sequence complexity, Random Sequence Complexity (RSC), Ordered Sequence Complexity (OSC) and Functional Sequence Complexity (FSC) observed in biosequences such as proteins. In this paper, we provide a method to measure functional sequence complexity.</p> <p>Methods and Results</p> <p>We have extended Shannon uncertainty by incorporating the data variable with a functionality variable. The resulting measured unit, which we call Functional bit (Fit), is calculated from the sequence data jointly with the defined functionality variable. To demonstrate the relevance to functional bioinformatics, a method to measure functional sequence complexity was developed and applied to 35 protein families. Considerations were made in determining how the measure can be used to correlate functionality when relating to the whole molecule and sub-molecule. In the experiment, we show that when the proposed measure is applied to the aligned protein sequences of ubiquitin, 6 of the 7 highest value sites correlate with the binding domain.</p> <p>Conclusion</p> <p>For future extensions, measures of functional bioinformatics may provide a means to evaluate potential evolving pathways from effects such as mutations, as well as analyzing the internal structural and functional relationships within the 3-D structure of proteins.</p
Discovering the constrained NMSSM with tau leptons at the LHC
The constrained Next-to-Minimal Supersymmetric Standard Model (cNMSSM) with
mSugra-like boundary conditions at the GUT scale implies a singlino-like LSP
with a mass just a few GeV below a stau NLSP. Hence, most of the squark/gluino
decay cascades contain two tau leptons. The gluino mass >~ 1.2 TeV is somewhat
larger than the squark masses of >~ 1 TeV. We simulate signal and background
events for such a scenario at the LHC, and propose cuts on the transverse
momenta of two jets, the missing transverse energy and the transverse momentum
of a hadronically decaying tau lepton. This dedicated analysis allows to
improve on the results of generic supersymmetry searches for a large part of
the parameter space of the cNMSSM. The distribution of the effective mass and
the signal rate provide sensitivity to distinguish the cNMSSM from the
constrained Minimal Supersymmetric Standard Model in the stau-coannihilation
region.Comment: 18 pages, 3 Figure
Enhanced error estimator based on a nearly equilibrated moving least squares recovery technique for FEM and XFEM
In this paper a new technique aimed to obtain accurate estimates of the error
in energy norm using a moving least squares (MLS) recovery-based procedure is
presented. We explore the capabilities of a recovery technique based on an
enhanced MLS fitting, which directly provides continuous interpolated fields,
to obtain estimates of the error in energy norm as an alternative to the
superconvergent patch recovery (SPR). Boundary equilibrium is enforced using a
nearest point approach that modifies the MLS functional. Lagrange multipliers
are used to impose a nearly exact satisfaction of the internal equilibrium
equation. The numerical results show the high accuracy of the proposed error
estimator
Four Generations: SUSY and SUSY Breaking
We revisit four generations within the context of supersymmetry. We compute
the perturbativity limits for the fourth generation Yukawa couplings and show
that if the masses of the fourth generation lie within reasonable limits of
their present experimental lower bounds, it is possible to have perturbativity
only up to scales around 1000 TeV. Such low scales are ideally suited to
incorporate gauge mediated supersymmetry breaking, where the mediation scale
can be as low as 10-20 TeV. The minimal messenger model, however, is highly
constrained. While lack of electroweak symmetry breaking rules out a large part
of the parameter space, a small region exists, where the fourth generation stau
is tachyonic. General gauge mediation with its broader set of boundary
conditions is better suited to accommodate the fourth generation.Comment: 27 pages, 5 figure
Supersymmetry in the shadow of photini
Additional neutral gauge fermions -- "photini" -- arise in string
compactifications as superpartners of U(1) gauge fields. Unlike their vector
counterparts, the photini can acquire weak-scale masses from soft SUSY breaking
and lead to observable signatures at the LHC through mass mixing with the bino.
In this work we investigate the collider consequences of adding photini to the
neutralino sector of the MSSM. Relatively large mixing of one or more photini
with the bino can lead to prompt decays of the lightest ordinary supersymmetric
particle; these extra cascades transfer most of the energy of SUSY decay chains
into Standard Model particles, diminishing the power of missing energy as an
experimental handle for signal discrimination. We demonstrate that the missing
energy in SUSY events with photini is reduced dramatically for supersymmetric
spectra with MSSM neutralinos near the weak scale, and study the effects on
limits set by the leading hadronic SUSY searches at ATLAS and CMS. We find that
in the presence of even one light photino the limits on squark masses from
hadronic searches can be reduced by 400 GeV, with comparable (though more
modest) reduction of gluino mass limits. We also consider potential discovery
channels such as dilepton and multilepton searches, which remain sensitive to
SUSY spectra with photini and can provide an unexpected route to the discovery
of supersymmetry. Although presented in the context of photini, our results
apply in general to theories in which additional light neutral fermions mix
with MSSM gauginos.Comment: 23 pages, 8 figures, references adde
- …