126 research outputs found
The Impact of HAART on the Respiratory Complications of HIV Infection: Longitudinal Trends in the MACS and WIHS Cohorts
Objective: To review the incidence of respiratory conditions and their effect on mortality in HIV-infected and uninfected individuals prior to and during the era of highly active antiretroviral therapy (HAART). Design: Two large observational cohorts of HIV-infected and HIV-uninfected men (Multicenter AIDS Cohort Study [MACS]) and women (Women's Interagency HIV Study [WIHS]), followed since 1984 and 1994, respectively. Methods: Adjusted odds or hazards ratios for incident respiratory infections or non-infectious respiratory diagnoses, respectively, in HIV-infected compared to HIV-uninfected individuals in both the pre-HAART (MACS only) and HAART eras; and adjusted Cox proportional hazard ratios for mortality in HIV-infected persons with lung disease during the HAART era. Results: Compared to HIV-uninfected participants, HIV-infected individuals had more incident respiratory infections both pre-HAART (MACS, odds ratio [adjusted-OR], 2.4; 95% confidence interval [CI], 2.2-2.7; p<0.001) and after HAART availability (MACS, adjusted-OR, 1.5; 95%CI 1.3-1.7; p<0.001; WIHS adjusted-OR, 2.2; 95%CI 1.8-2.7; p<0.001). Chronic obstructive pulmonary disease was more common in MACS HIV-infected vs. HIV-uninfected participants pre-HAART (hazard ratio [adjusted-HR] 2.9; 95%CI, 1.02-8.4; p = 0.046). After HAART availability, non-infectious lung diseases were not significantly more common in HIV-infected participants in either MACS or WIHS participants. HIV-infected participants in the HAART era with respiratory infections had an increased risk of death compared to those without infections (MACS adjusted-HR, 1.5; 95%CI, 1.3-1.7; p<0.001; WIHS adjusted-HR, 1.9; 95%CI, 1.5-2.4; p<0.001). Conclusion: HIV infection remained a significant risk for infectious respiratory diseases after the introduction of HAART, and infectious respiratory diseases were associated with an increased risk of mortality. © 2013 Gingo et al
Understory Bird Communities in Amazonian Rainforest Fragments: Species Turnover through 25 Years Post-Isolation in Recovering Landscapes
Inferences about species loss following habitat conversion are typically drawn from short-term surveys, which cannot reconstruct long-term temporal dynamics of extinction and colonization. A long-term view can be critical, however, to determine the stability of communities within fragments. Likewise, landscape dynamics must be considered, as second growth structure and overall forest cover contribute to processes in fragments. Here we examine bird communities in 11 Amazonian rainforest fragments of 1–100 ha, beginning before the fragments were isolated in the 1980s, and continuing through 2007. Using a method that accounts for imperfect detection, we estimated extinction and colonization based on standardized mist-net surveys within discreet time intervals (1–2 preisolation samples and 4–5 post-isolation samples). Between preisolation and 2007, all fragments lost species in an area-dependent fashion, with loss of as few as <10% of preisolation species from 100-ha fragments, but up to 70% in 1-ha fragments. Analysis of individual time intervals revealed that the 2007 result was not due to gradual species loss beginning at isolation; both extinction and colonization occurred in every time interval. In the last two samples, 2000 and 2007, extinction and colonization were approximately balanced. Further, 97 of 101 species netted before isolation were detected in at least one fragment in 2007. Although a small subset of species is extremely vulnerable to fragmentation, and predictably goes extinct in fragments, developing second growth in the matrix around fragments encourages recolonization in our landscapes. Species richness in these fragments now reflects local turnover, not long-term attrition of species. We expect that similar processes could be operating in other fragmented systems that show unexpectedly low extinction
GABA Receptors and the Pharmacology of Sleep
Current GABAergic sleep-promoting medications were developed pragmatically, without making use of the immense diversity of GABAA receptors. Pharmacogenetic experiments are leading to an understanding of the circuit mechanisms in the hypothalamus by which zolpidem and similar compounds induce sleep at α2βγ2-type GABAA receptors. Drugs acting at more selective receptor types, for example, at receptors containing the α2 and/or α3 subunits expressed in hypothalamic and brain stem areas, could in principle be useful as hypnotics/anxiolytics. A highly promising sleep-promoting drug, gaboxadol, which activates αβδ-type receptors failed in clinical trials. Thus, for the time being, drugs such as zolpidem, which work as positive allosteric modulators at GABAA receptors, continue to be some of the most effective compounds to treat primary insomnia
Elucidating the role of metal ions in carbonic anhydrase catalysis
Why metalloenzymes often show dramatic changes in their catalytic activity when subjected to chemically similar but non-native metal substitutions is a long-standing puzzle. Here, we report on the catalytic roles of metal ions in a model metalloenzyme system, human carbonic anhydrase II (CA II). Through a comparative study on the intermediate states of the zinc-bound native CA II and non-native metal-substituted CA IIs, we demonstrate that the characteristic metal ion coordination geometries (tetrahedral for Zn2+, tetrahedral to octahedral conversion for Co2+, octahedral for Ni2+, and trigonal bipyramidal for Cu2+) directly modulate the catalytic efficacy. In addition, we reveal that the metal ions have a long-range (~10 ??) electrostatic effect on restructuring water network in the active site. Our study provides evidence that the metal ions in metalloenzymes have a crucial impact on the catalytic mechanism beyond their primary chemical properties. ?? 2020, The Author(s)
- …