11 research outputs found

    Serum CD26 is related to histopathological polyp traits and behaves as a marker for colorectal cancer and advanced adenomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Serum CD26 (sCD26) levels were previously found diminished in colorectal cancer (CRC) patients compared to healthy donors, suggesting its potential utility for early diagnosis. Therefore we aimed to estimate the utility of the sCD26 as a biomarker for CRC and advanced adenomas in a high-risk group of patients. The relationship of this molecule with polyp characteristics was also addressed.</p> <p>Methods</p> <p>sCD26 levels were measured by ELISA in 299 symptomatic and asymptomatic patients who had undergone a colonoscopy. Patients were diagnosed as having no colorectal pathology, non-inflammatory or inflammatory bowel disease, polyps (hyperplastic, non-advanced and advanced adenomas) or CRC.</p> <p>Results</p> <p>At a 460 ng/mL cut-off, the sCD26 has a sensitivity and specificity of 81.8% (95% CI, 64.5-93.0%) and 72.3% (95% CI, 65.0-77.2%) for CRC regarding no or benign colorectal pathology. Clinicopathological analysis of polyps showed a relationship between the sCD26 and the grade of dysplasia and the presence of advanced adenomas. Hence, a 58.0% (95% CI, 46.5-68.9%) sensitivity detecting CRC and advanced adenomas was obtained, with a specificity of 75.5% (95% CI, 68.5-81.0%).</p> <p>Conclusions</p> <p>Our preliminary results show that measurement of the sCD26 is a non-invasive and reasonably sensitive assay, which could be combined with others such as the faecal occult blood test for the early diagnosis and screening of CRC and advanced adenomas. Additional comparative studies in average-risk populations are necessary.</p

    Radio Emission from Ultra-Cool Dwarfs

    Full text link
    The 2001 discovery of radio emission from ultra-cool dwarfs (UCDs), the very low-mass stars and brown dwarfs with spectral types of ~M7 and later, revealed that these objects can generate and dissipate powerful magnetic fields. Radio observations provide unparalleled insight into UCD magnetism: detections extend to brown dwarfs with temperatures <1000 K, where no other observational probes are effective. The data reveal that UCDs can generate strong (kG) fields, sometimes with a stable dipolar structure; that they can produce and retain nonthermal plasmas with electron acceleration extending to MeV energies; and that they can drive auroral current systems resulting in significant atmospheric energy deposition and powerful, coherent radio bursts. Still to be understood are the underlying dynamo processes, the precise means by which particles are accelerated around these objects, the observed diversity of magnetic phenomenologies, and how all of these factors change as the mass of the central object approaches that of Jupiter. The answers to these questions are doubly important because UCDs are both potential exoplanet hosts, as in the TRAPPIST-1 system, and analogues of extrasolar giant planets themselves.Comment: 19 pages; submitted chapter to the Handbook of Exoplanets, eds. Hans J. Deeg and Juan Antonio Belmonte (Springer-Verlag

    Yeasts associated with the production of distilled alcoholic beverages

    Get PDF
    Distilled alcoholic beverages are produced firstly by fermenting sugars emanating from cereal starches (in the case of whiskies), sucrose-rich plants (in the case of rums), fructooligosaccharide-rich plants (in the case of tequila) or from fruits (in the case of brandies). Traditionally, such fermentations were conducted in a spontaneous fashion, relying on indigenous microbiota, including wild yeasts. In modern practices, selected strains of Saccharomyces cerevisiae are employed to produce high levels of ethanol together with numerous secondary metabolites (eg. higher alcohols, esters, carbonyls etc.) which greatly influence the final flavour and aroma characteristics of spirits following distillation of the fermented wash. Therefore, distillers, like winemakers, must carefully choose their yeast strain which will be very important in providing the alcohol content and the sensory profiles of spirit beverages. This Chapter discusses yeast and fermentation aspects associated with the production of selected distilled spirits and highlights similarities and differences with the production of wine

    The Detectability of Earth's Biosignatures Across Time

    Full text link
    Over the past two decades, enormous advances in the detection of exoplanets have taken place. Currently, we have discovered hundreds of earth-sized planets, several of them within the habitable zone of their star. In the coming years, the efforts will concentrate in the characterization of these planets and their atmospheres to try to detect the presence of biosignatures. However, even if we discovered a second Earth, it is very unlikely that it would present a stage of evolution similar to the present-day Earth. Our planet has been far from static since its formation about 4.5 Ga ago; on the contrary, during this time, it has undergone multiple changes in it's atmospheric composition, it's temperature structure, it's continental distribution, and even changes in the forms of life that inhabit it. All these changes have affected the global properties of Earth as seen from an astronomical distance. Thus, it is of interest not only to characterize the observables of the Earth as it is today, but also at different epochs. Here we review the detectability of the Earth's globally-averaged properties over time. This includes atmospheric composition and biosignatures, and surface properties that can be interpreted as sings of habitability (bioclues). The resulting picture is that truly unambiguous biosignatures are only detectable for about 1/4 of the Earth's history. The rest of the time we rely on detectable bioclues that can only establish an statistical likelihood for the presence of life on a given planet.Comment: To appear in "Handbook of Exoplanets", eds. Deeg, H.J. & Belmonte, J.A, Springer (2018). arXiv admin note: text overlap with arXiv:astro-ph/0609398 by other author
    corecore