8 research outputs found

    CD14-159C/T polymorphism in the development of delayed skin hypersensitivity to tuberculin

    Get PDF
    The skin tuberculin test (TST), an example of a delayed-type hypersensitivity (DTH) reaction, is based on measuring the extent of skin induration to mycobacterial tuberculin (PPD). Little is known about the genetic basis of TST reactivity, widely used for diagnosing TB infection. The study investigated the relationship of the single base change polymorphic variants in CD14 gene (CD14(-159C/T)) with the development of DTH to PPD in BCG-vaccinated Polish Caucasian individuals. We found persistent lack of TST reactivity in about 40% of healthy subjects despite receiving more than one dose of BCG. The TST size was negatively correlated with the number of BCG inoculations. The distribution of C/T genotype was significantly more frequent among TST-negative compared with TST-positive individuals. The concentration of serum sCD14 was positively associated with mCD14 expression, but not with the TST status or CD14(-159C/T) polymorphism. A significant increase in mCD14 expression and serum sCD14 levels was found in TB group. We hypothesize that CD14(-159C/T) polymorphic variants might be one of genetic components in the response to attenuated M. bovis BCG bacilli

    Monocyte-lymphocyte cross-communication via soluble CD163 directly links innate immune system activation and adaptive immune system suppression following ischemic stroke

    Get PDF
    Abstract CD163 is a scavenger receptor expressed on innate immune cell populations which can be shed from the plasma membrane via the metalloprotease ADAM17 to generate a soluble peptide with lympho-inhibitory properties. The purpose of this study was to investigate CD163 as a possible effector of stroke-induced adaptive immune system suppression. Liquid biopsies were collected from ischemic stroke patients (n = 39), neurologically asymptomatic controls (n = 20), and stroke mimics (n = 20) within 24 hours of symptom onset. Peripheral blood ADAM17 activity and soluble CD163 levels were elevated in stroke patients relative to non-stroke control groups, and negatively associated with post-stroke lymphocyte counts. Subsequent in vitro experiments suggested that this stroke-induced elevation in circulating soluble CD163 likely originates from activated monocytic cells, as serum from stroke patients stimulated ADAM17-dependant CD163 shedding from healthy donor-derived monocytes. Additional in vitro experiments demonstrated that stroke-induced elevations in circulating soluble CD163 can elicit direct suppressive effects on the adaptive immune system, as serum from stroke patients inhibited the proliferation of healthy donor-derived lymphocytes, an effect which was attenuated following serum CD163 depletion. Collectively, these observations provide novel evidence that the innate immune system employs protective mechanisms aimed at mitigating the risk of post-stroke autoimmune complications driven by adaptive immune system overactivation, and that CD163 is key mediator of this phenomenon

    Olfactory bulb involvement in neurodegenerative diseases

    No full text

    Toll-like receptors and immune cell crosstalk in the intestinal epithelium

    No full text
    corecore