162 research outputs found

    Chronic psychosocial and financial burden accelerates 5-year telomere shortening: findings from the Coronary Artery Risk Development in Young Adults Study.

    Get PDF
    Leukocyte telomere length, a marker of immune system function, is sensitive to exposures such as psychosocial stressors and health-maintaining behaviors. Past research has determined that stress experienced in adulthood is associated with shorter telomere length, but is limited to mostly cross-sectional reports. We test whether repeated reports of chronic psychosocial and financial burden is associated with telomere length change over a 5-year period (years 15 and 20) from 969 participants in the Coronary Artery Risk Development in Young Adults (CARDIA) Study, a longitudinal, population-based cohort, ages 18-30 at time of recruitment in 1985. We further examine whether multisystem resiliency, comprised of social connections, health-maintaining behaviors, and psychological resources, mitigates the effects of repeated burden on telomere attrition over 5 years. Our results indicate that adults with high chronic burden do not show decreased telomere length over the 5-year period. However, these effects do vary by level of resiliency, as regression results revealed a significant interaction between chronic burden and multisystem resiliency. For individuals with high repeated chronic burden and low multisystem resiliency (1 SD below the mean), there was a significant 5-year shortening in telomere length, whereas no significant relationships between chronic burden and attrition were evident for those at moderate and higher levels of resiliency. These effects apply similarly across the three components of resiliency. Results imply that interventions should focus on establishing strong social connections, psychological resources, and health-maintaining behaviors when attempting to ameliorate stress-related decline in telomere length among at-risk individuals

    Polymorphisms in genes of interleukin 12 and its receptors and their association with protection against severe malarial anaemia in children in western Kenya

    Get PDF
    Abstract Background: Malarial anaemia is characterized by destruction of malaria infected red blood cells and suppression of erythropoiesis. Interleukin 12 (IL12) significantly boosts erythropoietic responses in murine models of malarial anaemia and decreased IL12 levels are associated with severe malarial anaemia (SMA) in children. Based on the biological relevance of IL12 in malaria anaemia, the relationship between genetic polymorphisms of IL12 and its receptors and SMA was examined. Methods: Fifty-five tagging single nucleotide polymorphisms covering genes encoding two IL12 subunits, IL12A and IL12B, and its receptors, IL12RB1 and IL12RB2, were examined in a cohort of 913 children residing in Asembo Bay region of western Kenya. Results: An increasing copy number of minor variant (C) in IL12A (rs2243140) was significantly associated with a decreased risk of SMA (P = 0.006; risk ratio, 0.52 for carrying one copy of allele C and 0.28 for two copies). Individuals possessing two copies of a rare variant (C) in IL12RB1 (rs429774) also appeared to be strongly protective against SMA (P = 0.00005; risk ratio, 0.18). In addition, children homozygous for another rare allele (T) in IL12A (rs22431348) were associated with reduced risk of severe anaemia (SA) (P = 0.004; risk ratio, 0.69) and of severe anaemia with any parasitaemia (SAP) (P = 0.004; risk ratio, 0.66). In contrast, AG genotype for another variant in IL12RB1 (rs383483) was associated with susceptibility to high-density parasitaemia (HDP) (P = 0.003; risk ratio, 1.21). Conclusions: This study has shown strong associations between polymorphisms in the genes of IL12A and IL12RB1 and protection from SMA in Kenyan children, suggesting that human genetic variants of IL12 related genes may significantly contribute to the development of anaemia in malaria patients

    Autism diagnosis differentiates neurophysiological responses to faces in adults with tuberous sclerosis complex

    Get PDF
    - Background: Autism spectrum disorder (ASD) is a common and highly heritable neurodevelopmental disorder that is likely to be the outcome of complex aetiological mechanisms. One strategy to provide insight is to study ASD within tuberous sclerosis complex (TSC), a rare disorder with a high incidence of ASD, but for which the genetic cause is determined. Individuals with ASD consistently demonstrate face processing impairments, but these have not been examined in adults with TSC using event-related potentials (ERPs) that are able to capture distinct temporal stages of processing. - Methods: For adults with TSC (n = 14), 6 of which had a diagnosis of ASD, and control adults (n = 13) passively viewed upright and inverted human faces with direct or averted gaze, with concurrent EEG recording. Amplitude and latency of the P1 and N170 ERPs were measured. - Results: Individuals with TSC + ASD exhibited longer N170 latencies to faces compared to typical adults. Typical adults and adults with TSC-only exhibited longer N170 latency to inverted versus upright faces, whereas individuals with TSC + ASD did not show latency differences according to face orientation. In addition, individuals with TSC + ASD showed increased N170 latency to averted compared to direct gaze, which was not demonstrated in typical adults. A reduced lateralization was shown for the TSC + ASD groups on P1 and N170 amplitude. - Conclusions: The findings suggest that individuals with TSC + ASD may have similar electrophysiological abnormalities to idiopathic ASD and are suggestive of developmental delay. Identifying brain-based markers of ASD that are similar in TSC and idiopathic cases is likely to help elucidate the risk pathways to ASD

    An Efficient Coding Hypothesis Links Sparsity and Selectivity of Neural Responses

    Get PDF
    To what extent are sensory responses in the brain compatible with first-order principles? The efficient coding hypothesis projects that neurons use as few spikes as possible to faithfully represent natural stimuli. However, many sparsely firing neurons in higher brain areas seem to violate this hypothesis in that they respond more to familiar stimuli than to nonfamiliar stimuli. We reconcile this discrepancy by showing that efficient sensory responses give rise to stimulus selectivity that depends on the stimulus-independent firing threshold and the balance between excitatory and inhibitory inputs. We construct a cost function that enforces minimal firing rates in model neurons by linearly punishing suprathreshold synaptic currents. By contrast, subthreshold currents are punished quadratically, which allows us to optimally reconstruct sensory inputs from elicited responses. We train synaptic currents on many renditions of a particular bird's own song (BOS) and few renditions of conspecific birds' songs (CONs). During training, model neurons develop a response selectivity with complex dependence on the firing threshold. At low thresholds, they fire densely and prefer CON and the reverse BOS (REV) over BOS. However, at high thresholds or when hyperpolarized, they fire sparsely and prefer BOS over REV and over CON. Based on this selectivity reversal, our model suggests that preference for a highly familiar stimulus corresponds to a high-threshold or strong-inhibition regime of an efficient coding strategy. Our findings apply to songbird mirror neurons, and in general, they suggest that the brain may be endowed with simple mechanisms to rapidly change selectivity of neural responses to focus sensory processing on either familiar or nonfamiliar stimuli. In summary, we find support for the efficient coding hypothesis and provide new insights into the interplay between the sparsity and selectivity of neural responses

    A comparison of multidisciplinary team residential rehabilitation with conventional outpatient care for the treatment of non-arthritic intra-articular hip pain in UK Military personnel:a protocol for a randomised controlled trial

    Get PDF
    BACKGROUND: Non-arthritic hip disorders are defined as abnormalities of the articulating surfaces of the acetabulum and femur before the onset of osteoarthritis, including intra-articular structures such as the acetabular labrum and chondral surfaces. Abnormal femoroacetabular morphology is commonly seen in young men who constitute much of the UK military population. Residential multidisciplinary team (MDT) rehabilitation for patients with musculoskeletal injuries has a long tradition in the UK military, however, there are no studies presenting empirical data on the efficacy of a residential MDT approach compared with individualised conventional outpatient treatment. With no available data, the sustainability of this care pathway has been questioned. The purpose of this randomised controlled trial is to compare the effects of a residential multidisciplinary intervention, to usual outpatient care, on the clinical outcomes of young active adults undergoing treatment for non-arthritic intra-articular hip pain. METHODS/DESIGN: The trial will be conducted at the Defence Medical Rehabilitation Centre, Headley Court, UK. One hundred military male participants with clinical indicators of non-arthritic intra-articular hip pain will be randomly allocated to either: (1) 7-day residential multidisciplinary team intervention, n = 50; (2) 6-week physiotherapist-led outpatient intervention (conventional care), n = 50. Measurements will be taken at baseline, post-treatment (1-week MDT group; 6-weeks physiotherapy group), and 12-weeks. The primary outcome measures are the function in daily living sub-scale of the Copenhagen Hip and Groin Outcome Score (HAGOS), the physical function subscale of the Non-arthritic Hip Score (NAHS), and VAS pain scale. Secondary outcomes include objective measures of physical capacity and general health. An intention-to-treat analysis will be performed using linear and mixed models. DISCUSSION: This study will be the first to assess the efficacy of intensive MDT rehabilitation, versus conventional outpatient care, for the management of non-arthritic hip pain. The results from this study will add to the evidence-base and inform clinical practice for the management of intra-articular non-arthritic hip pain and femoroacetabular impingement in young active adults. TRIAL REGISTRATION: ISRCTN Reference: ISRCTN 59255714 dated 11-Nov-2015 ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12891-016-1309-z) contains supplementary material, which is available to authorized users

    Synthetic biology approaches in drug discovery and pharmaceutical biotechnology

    Get PDF
    Synthetic biology is the attempt to apply the concepts of engineering to biological systems with the aim to create organisms with new emergent properties. These organisms might have desirable novel biosynthetic capabilities, act as biosensors or help us to understand the intricacies of living systems. This approach has the potential to assist the discovery and production of pharmaceutical compounds at various stages. New sources of bioactive compounds can be created in the form of genetically encoded small molecule libraries. The recombination of individual parts has been employed to design proteins that act as biosensors, which could be used to identify and quantify molecules of interest. New biosynthetic pathways may be designed by stitching together enzymes with desired activities, and genetic code expansion can be used to introduce new functionalities into peptides and proteins to increase their chemical scope and biological stability. This review aims to give an insight into recently developed individual components and modules that might serve as parts in a synthetic biology approach to pharmaceutical biotechnology

    Constraints on black-hole charges with the 2017 EHT observations of M87*

    Get PDF
    Our understanding of strong gravity near supermassive compact objects has recently improved thanks to the measurements made by the Event Horizon Telescope (EHT). We use here the M87* shadow size to infer constraints on the physical charges of a large variety of nonrotating or rotating black holes. For example, we show that the quality of the measurements is already sufficient to rule out that M87* is a highly charged dilaton black hole. Similarly, when considering black holes with two physical and independent charges, we are able to exclude considerable regions of the space of parameters for the doubly-charged dilaton and the Sen black holes

    First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon

    Get PDF
    Event Horizon Telescope (EHT) observations at 230 GHz have now imaged polarized emission around the supermassive black hole in M87 on event-horizon scales. This polarized synchrotron radiation probes the structure of magnetic fields and the plasma properties near the black hole. Here we compare the resolved polarization structure observed by the EHT, along with simultaneous unresolved observations with the Atacama Large Millimeter/submillimeter Array, to expectations from theoretical models. The low fractional linear polarization in the resolved image suggests that the polarization is scrambled on scales smaller than the EHT beam, which we attribute to Faraday rotation internal to the emission region. We estimate the average density n_{e} ~ 10^{4–7} cm^{βˆ’3}, magnetic field strength B ~ 1–30 G, and electron temperature T_{e} ~ (1–12) Γ— 10^{10} K of the radiating plasma in a simple one-zone emission model. We show that the net azimuthal linear polarization pattern may result from organized, poloidal magnetic fields in the emission region. In a quantitative comparison with a large library of simulated polarimetric images from general relativistic magnetohydrodynamic (GRMHD) simulations, we identify a subset of physical models that can explain critical features of the polarimetric EHT observations while producing a relativistic jet of sufficient power. The consistent GRMHD models are all of magnetically arrested accretion disks, where near-horizon magnetic fields are dynamically important. We use the models to infer a mass accretion rate onto the black hole in M87 of (3–20) Γ— 10^{βˆ’4} MβŠ™ yr^{βˆ’1}

    Polarimetric Properties of Event Horizon Telescope Targets from ALMA

    Get PDF
    We present the results from a full polarization study carried out with the Atacama Large Millimeter/submillimeter Array (ALMA) during the first Very Long Baseline Interferometry (VLBI) campaign, which was conducted in 2017 April in the Ξ»3 mm and Ξ»1.3 mm bands, in concert with the Global mm-VLBI Array (GMVA) and the Event Horizon Telescope (EHT), respectively. We determine the polarization and Faraday properties of all VLBI targets, including Sgr A*, M87, and a dozen radio-loud active galactic nuclei (AGNs), in the two bands at several epochs in a time window of 10 days. We detect high linear polarization fractions (2%–15%) and large rotation measures (RM > 10^{3.3}–10^{5.5} rad m^{βˆ’2}), confirming the trends of previous AGN studies at millimeter wavelengths. We find that blazars are more strongly polarized than other AGNs in the sample, while exhibiting (on average) order-of-magnitude lower RM values, consistent with the AGN viewing angle unification scheme. For Sgr A* we report a mean RM of (βˆ’4.2 Β± 0.3) Γ— 10^{5} rad m^{βˆ’2} at 1.3 mm, consistent with measurements over the past decade and, for the first time, an RM of (–2.1 Β± 0.1) Γ— 10^{5} rad m^{βˆ’2} at 3 mm, suggesting that about half of the Faraday rotation at 1.3 mm may occur between the 3 mm photosphere and the 1.3 mm source. We also report the first unambiguous measurement of RM toward the M87 nucleus at millimeter wavelengths, which undergoes significant changes in magnitude and sign reversals on a one year timescale, spanning the range from βˆ’1.2 to 0.3 Γ— 10^{5} rad m^{βˆ’2} at 3 mm and βˆ’4.1 to 1.5 Γ— 10^{5} rad m^{βˆ’2} at 1.3 mm. Given this time variability, we argue that, unlike the case of Sgr A*, the RM in M87 does not provide an accurate estimate of the mass accretion rate onto the black hole. We put forward a two-component model, comprised of a variable compact region and a static extended region, that can simultaneously explain the polarimetric properties observed by both the EHT (on horizon scales) and ALMA (which observes the combined emission from both components). These measurements provide critical constraints for the calibration, analysis, and interpretation of simultaneously obtained VLBI data with the EHT and GMVA
    • …
    corecore