27 research outputs found

    A participatory physical and psychosocial intervention for balancing the demands and resources among industrial workers (PIPPI): study protocol of a cluster-randomized controlled trial

    Get PDF
    Background: Need for recovery and work ability are strongly associated with high employee turnover, well-being and sickness absence. However, scientific knowledge on effective interventions to improve work ability and decrease need for recovery is scarce. Thus, the present study aims to describe the background, design and protocol of a cluster randomized controlled trial evaluating the effectiveness of an intervention to reduce need for recovery and improve work ability among industrial workers. Methods/Design: A two-year cluster randomized controlled design will be utilized, in which controls will also receive the intervention in year two. More than 400 workers from three companies in Denmark will be aimed to be cluster randomized into intervention and control groups with at least 200 workers (at least 9 work teams) in each group. An organizational resources audit and subsequent action planning workshop will be carried out to map the existing resources and act upon initiatives not functioning as intended. Workshops will be conducted to train leaders and health and safety representatives in supporting and facilitating the intervention activities. Group and individual level participatory visual mapping sessions will be carried out allowing team members to discuss current physical and psychosocial work demands and resources, and develop action plans to minimize strain and if possible, optimize the resources. At all levels, the intervention will be integrated into the existing organization of work schedules. An extensive process and effect evaluation on need for recovery and work ability will be carried out via questionnaires, observations, interviews and organizational data assessed at several time points throughout the intervention period. Discussion: This study primarily aims to develop, implement and evaluate an intervention based on the abovementioned features which may improve the work environment, available resources and health of industrial workers, and hence their need for recovery and work ability

    Immune mechanisms in malaria: new insights in vaccine development.

    No full text
    Early data emerging from the first phase 3 trial of a malaria vaccine are raising hopes that a licensed vaccine will soon be available for use in endemic countries, but given the relatively low efficacy of the vaccine, this needs to be seen as a major step forward on the road to a malaria vaccine rather than as arrival at the final destination. The focus for vaccine developers now moves to the next generation of malaria vaccines, but it is not yet clear what characteristics these new vaccines should have or how they can be evaluated. Here we briefly review the epidemiological and immunological requirements for malaria vaccines and the recent history of malaria vaccine development and then put forward a manifesto for future research in this area. We argue that rational design of more effective malaria vaccines will be accelerated by a better understanding of the immune effector mechanisms involved in parasite regulation, control and elimination

    A Plasmodium berghei sporozoite-based vaccination platform against human malaria

    No full text
    Malaria: Programming non-pathogenic parasites as vaccine candidates A genetically engineered parasite, related to malaria-causing Plasmodium falciparum, excels as a vaccine in preclinical tests. A team led by Miguel Prudêncio, of the University of Lisbon, Portugal, developed a genetically altered vaccine candidate based on Plasmodium berghei, which is pathogenic to rodents but, in humans, fails to progress from a harmless, transient liver infection to causing full, blood-borne malaria. The candidate expresses a human form of ‘circumsporozoite protein,’ a known antigen, and is designed to provoke a more comprehensive immune response as it presents a whole pathogen to the host. In preclinical tests, the candidate generated antibodies able to neutralize infection in human hepatocytes and also provoked a cellular immune response in rabbits. The team’s candidate proved safe and efficacious, warranting further trials and clinical testing

    Cytotoxic anti-circumsporozoite antibodies target malaria sporozoites in the host skin

    No full text
    International audienceThe circumsporozoite protein (CSP) is the major surface protein of malaria sporozoites (SPZs), the motile and invasive parasite stage inoculated in the host skin by infected mosquitoes. Antibodies against the central CSP repeats of different plasmodial species are known to block SPZ infectivity1,2,3,4,5, but the precise mechanism by which these effectors operate is not completely understood. Here, using a rodent Plasmodium yoelii malaria model, we show that sterile protection mediated by anti-P. yoelii CSP humoral immunity depends on the parasite inoculation into the host skin, where antibodies inhibit motility and kill P. yoelii SPZs via a characteristic ‘dotty death’ phenotype. Passive transfer of an anti-repeat monoclonal antibody (mAb) recapitulates the skin inoculation-dependent protection, in a complement- and Fc receptor γ-independent manner. This purified mAb also decreases motility and, notably, induces the dotty death of P. yoelii SPZs in vitro. Cytotoxicity is species-transcendent since cognate anti-CSP repeat mAbs also kill Plasmodium berghei and Plasmodium falciparum SPZs. mAb cytotoxicity requires the actomyosin motor-dependent translocation and stripping of the protective CSP surface coat, rendering the parasite membrane susceptible to the SPZ pore-forming-like protein secreted to wound and traverse the host cell membrane6. The loss of SPZ fitness caused by anti-P. yoelii CSP repeat antibodies is thus a dynamic process initiated in the host skin where SPZs either stop moving7, or migrate and traverse cells to progress through the host tissues7,8,9 at the eventual expense of their own life
    corecore